Классификация методов интеллектуального анализа данных. Интеллектуальный анализ данных

Интеллектуальный анализ данных (ИАД), или Data Mining, - термин, используемый для описания открытия знаний в базах данных, выделения знаний, изыскания данных, исследования данных, обработки образцов данных, очистки и сбора данных; здесь же подразумевается сопутствующее ПО. Все эти действия осуществляются автоматически и позволяют получать быстрые результаты даже непрограммистам.

Запрос производится конечным пользователем, возможно на естественном языке. Запрос преобразуется в SQL – формат. SQL запрос по сети поступает в СУБД, которая управляет БД или хранилищем данных. СУБД находит ответ на запрос и доставляет его назад. Пользователь может затем разрабатывать презентацию или отчет в соответствии со своими требованиями.

Многие важные решения в почти любой области бизнеса и социально сферы основываются на анализе больших и сложных БД. ИАД может быть очень полезным в этих случаях.

Методы интеллектуального анализа данных тесно связаны с технологиями OLAP и технологиями построения хранилищ данных. Поэтому наилучшим вариантом является комплексный подход к их внедрению.

Для того чтобы существующие хранилища данных способствовали принятию управленческих решений, информация должна быть представлена аналитику в нужной форме, то есть он должен иметь развитые инструменты доступа к данным хранилища и их обработки.

Очень часто информационно – аналитические системы, создаваемые в расчете на непосредственное использование лицами, принимающими решения, оказываются чрезвычайно просты в применении, но жестко ограничены в функциональности. Такие статические системы называются Информационными системами руководителя. Они содержат в себе предопределенные множества запросов и, будучи достаточными для повседневного обзора, неспособны ответить на все вопросы к имеющимся данным, которые могут возникнуть при принятии решений. Результатов работы такой системы, как правило, являются многостраничные отчеты, после тщательного изучения которых у аналитика появляется новая серия вопросов. Однако каждый новый запрос, непредусмотренный при проектировании такой системы, должен быть сначала формально описан, закодирован программистом и только затем выполнен. Время ожидания в таком случае может составлять часы и дни, что не всегда приемлемо. Таким образом, внешняя простота статистических ИС поддержки решений, за которую активно борется большинство заказчиков информационно – аналитических систем, оборачивается потерей гибкости.

Динамические ИС поддержки решений, напротив, ориентированы на обработку нерегламентированных (ad hoc) запросов аналитиков к данным. Работа аналитиков с этими системами заключается в интерактивной последовательности формирования запросов и изучения их результатов.


Но динамические ИС поддержки решений могут действовать не только в области оперативной аналитической обработки (OLAP). Поддержка принятия управленческих решений на основе накопленных данных может выполняться в трех базовых сферах.

1. Сфера детализированных данных. Это область действия большинства систем, нацеленных на поиск информации. В большинстве случаев реляционные СУБД отлично справляются с возникающими здесь задачами. Общепризнанным стандартом языка манипулирования реляционными данными является SQL. Информационно – поисковые системы, обеспечивающие интерфейс конечного пользователя в задачах поиска детализированной информации, могут использоваться в качестве надстроек как над отдельными базами данных транзакционных систем, так и над общим хранилищем данных.

2. Сфера агрегированных показателей. Комплексный взгляд на собранную в хранилище данных информацию, ее обобщение и агрегация и многомерный анализ являются задачами систем OLAP. Здесь можно или ориентироваться на специальные многомерные СУБД, или оставаться в рамках реляционных технологий. Во втором случае заранее агрегированные данные могут собираться в БД звездообразного вида, либо агрегация информации может производится в процессе сканирования детализированных таблиц реляционной БД.

3. Сфера закономерностей. Интеллектуальная обработка производится методами интеллектуального анализа данных главными задачами которых являются поиск функциональных и логических закономерностей в накопленной информации, построение моделей и правил, которые объясняют найденные аномалии и/или прогнозируют развитие некоторых процессов.

Полная структура информационно – аналитической системы построенной на основе хранилища данных, показана на рис.3.2. В конкретных реализациях отдельные компоненты этой схемы часто отсутствуют.

Рис.3.2. Структура корпоративной информационно – аналитической системы.

Целью интеллектуального анализа данных (англ. Datamining, другие варианты перевода - "добыча данных", "раскопка данных") является обнаружение неявных закономерностей в наборах данных. Как научное направление он стал активно развиваться в 90-х годах XXвека, что было вызвано широким распространением технологий автоматизированной обработки информации и накоплением в компьютерных системах больших объемов данных [ , ]. И хотя существующие технологии позволяли, например, быстро найти в базе данных нужную информацию, этого во многих случаях было уже недостаточно. Возникла потребность поиска взаимосвязей между отдельными событиями среди больших объемов данных, для чего понадобились методы математической статистики, теории баз данных, теории искусственного интеллекта и ряда других областей.

Классическим считается определение ,данное одним из основателей направления Григорием Пятецким-Шапиро : DataMining - исследование и обнаружение "машиной" (алгоритмами, средствами искусственного интеллекта) в сырых данных скрытых знаний, которые ранее не были известны, нетривиальны, практически полезны, доступны для интерпретации.

Учитывая разнообразие форм представления данных, используемых алгоритмов и сфер применения, интеллектуальный анализ данных может проводиться с помощью программных продуктов следующих классов:

  • специализированных "коробочных" программных продуктов для интеллектуального анализа;
  • математических пакетов;
  • электронных таблиц(и различного рода надстроек над ними);
  • средств интегрированных в системы управления базами данных (СУБД);
  • других программных продуктов.

В рамках данного курса нас в первую очередь будут интересовать средства, интегрированные с СУБД . В качестве примера можно привести СУБД MicrosoftSQLServer и входящие в ее состав службы AnalysisServices, обеспечивающие пользователей средствами аналитической обработки данных в режиме on-line ( OLAP )и интеллектуального анализа данных, которые впервые появились в MSSQLServer 2000.

Не только Microsoft, но и другие ведущие разработчики СУБД имеют в своем арсенале средства интеллектуального анализа данных.

Задачи интеллектуального анализа данных

В ходе проведения интеллектуального анализа данных проводится исследование множества объектов (или вариантов). В большинстве случаев его можно представить в виде таблицы, каждая строка которой соответствует одному из вариантов, а в столбцах содержатся значения параметров, его характеризующих. Зависимая переменная - параметр , значение которого рассматриваем как зависящее от других параметров (независимых переменных). Собственно эту зависимость и необходимо определить, используя методы интеллектуального анализа данных.

Рассмотрим основные задачи интеллектуального анализа данных.

Задача классификации заключается в том, что для каждого варианта определяется категория или класс , которому он принадлежит. В качестве примера можно привести оценку кредитоспособности потенциального заемщика: назначаемые классы здесь могут быть "кредитоспособен" и "некредитоспособен". Необходимо отметить, что для решения задачи необходимо, чтобы множество классов было известно заранее и было бы конечным и счетным.

Задача регрессии во многом схожа с задачей классификации, но в ходе ее решения производится поиск шаблонов для определения числового значения. Иными словами, предсказываемый параметр здесь, как правило, число из непрерывного диапазона.

Отдельно выделяется задача прогнозирования новых значений на основании имеющихся значений числовой последовательности (или нескольких последовательностей, между значениями в которых наблюдается корреляция). При этом могут учитываться имеющиеся тенденции (тренды), сезонность, другие факторы. Классическим примером является прогнозирование цен акций на бирже.

Тут требуется сделать небольшое отступление. По способу решения задачи интеллектуального анализа можно разделить на два класса: обучение с учителем (от англ. supervisedlearning) и обучение без учителя (от англ. unsupervisedlearning). В первом случае требуется обучающий набор данных, на котором создается и обучается модель интеллектуального анализа данных. Готовая модель тестируется и впоследствии используется для предсказания значений в новых наборах данных. Иногда в этом же случае говорят об управляемых алгоритмах интеллектуального анализа. Задачи классификации и регрессии относятся как раз к этому типу.

Во втором случае целью является выявление закономерностей имеющихся в существующем наборе данных. При этом обучающая выборка не требуется. В качестве примера можно привести задачу анализа потребительской корзины, когда в ходе исследования выявляются товары, чаще всего покупаемые вместе. К этому же классу относится задача кластеризации.

Также можно говорить о классификации задач интеллектуального анализа данных по назначению, в соответствии с которой,они делятся на описательные (descriptive) и предсказательные (predictive). Цель решения описательных задач - лучше понять исследуемые данные, выявить имеющиеся в них закономерности, даже если в других наборах данных они встречаться не будут. Для предсказательных задач характерно то, что в ходе их решения на основании набора данных с известными результатами строится модель для предсказания новых значений.

Но вернемся к перечислению задач интеллектуального анализа данных.

Задача кластеризации - заключается в делении множества объектов на группы (кластеры) схожих по параметрам. При этом, в отличие от классификации, число кластеров и их характеристики могут быть заранее неизвестны и определяться в ходе построения кластеров исходя из степени близости объединяемых объектов по совокупности параметров.

Другое название этой задачи - сегментация . Например, интернет-магазин может быть заинтересован в проведении подобного анализа базы своих клиентов, для того, чтобы потом сформировать специальные предложения для выделенных групп, учитывая их особенности.

Кластеризация относится к задачам обучения без учителя (или "неуправляемым" задачам).

Задача определения взаимосвязей , также называемая задачей поиска ассоциативных правил , заключается в определении часто встречающихся наборов объектов среди множества подобных наборов. Классическим примером является анализ потребительской корзины, который позволяет определить наборы товаров, чаще всего встречающиеся в одном заказе (или в одном чеке). Эта информация может потом использоваться при размещении товаров в торговом зале или при формировании специальных предложений для группы связанных товаров.

Данная задача также относится к классу "обучение без учителя".

Анализ последовательностей или сиквенциальный анализ одними авторами рассматривается как вариант предыдущей задачи, другими - выделяется отдельно. Целью, в данном случае, является обнаружение закономерностей в последовательностях событий. Подобная информация позволяет, например, предупредить сбой в работе информационной системы, получив сигнал о наступлении события, часто предшествующего сбою подобного типа. Другой пример применения - анализ последовательности переходов по страницам пользователей web-сайтов.

Информационные технологии Торговля Финансовая сфера

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Перспективные направления анализа данных: анализ текстовой информации, интеллектуальный анализ данных. Анализ структурированной информации, хранящейся в базах данных. Процесс анализа текстовых документов. Особенности предварительной обработки данных.

    реферат , добавлен 13.02.2014

    Рождение искусственного интеллекта. История развития нейронных сетей, эволюционного программирования, нечеткой логики. Генетические алгоритмы, их применение. Искусственный интеллект, нейронные сети, эволюционное программирование и нечеткая логика сейчас.

    реферат , добавлен 22.01.2015

    Совершенствование технологий записи и хранения данных. Специфика современных требований к переработке информационных данных. Концепция шаблонов, отражающих фрагменты многоаспектных взаимоотношений в данных в основе современной технологии Data Mining.

    контрольная работа , добавлен 02.09.2010

    Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.

    контрольная работа , добавлен 14.06.2013

    Основы для проведения кластеризации. Использование Data Mining как способа "обнаружения знаний в базах данных". Выбор алгоритмов кластеризации. Получение данных из хранилища базы данных дистанционного практикума. Кластеризация студентов и задач.

    курсовая работа , добавлен 10.07.2017

    Классификация задач Data Mining. Задача кластеризации и поиска ассоциативных правил. Определению класса объекта по его свойствам и характеристикам. Нахождение частых зависимостей между объектами или событиями. Оперативно-аналитическая обработка данных.

    контрольная работа , добавлен 13.01.2013

    Создание структуры интеллектуального анализа данных. Дерево решений. Характеристики кластера, определение групп объектов или событий. Линейная и логистическая регрессии. Правила ассоциативных решений. Алгоритм Байеса. Анализ с помощью нейронной сети.

    контрольная работа , добавлен 13.06.2014

Термин интеллектуальный анализ данных можно понимать двояко.

В узком смысле это попытка адекватного русского перевода термина Data Mining , который ввёл в обиход Григорий Пятецкий-Шапиро в 1992 году. Согласно его определению, Data Mining - это процесс обнаружения в сырых данных ранее неизвестных, нетривиальных, практически полезных, доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности . Дословный перевод «раскопки (или добыча) данных» следует, по всей видимости, считать неудачным.

В широком смысле это современная концепция анализа данных, предполагающая, что

  • данные могут быть неточными, неполными (содержать пропуски), противоречивыми, разнородными, косвенными, и при этом иметь гигантские объёмы; поэтому понимание данных в конкретных приложениях требует значительных интеллектуальных усилий;
  • сами алгоритмы анализа данных могут обладать «элементами интеллекта», в частности, способностью обучаться по прецедентам , то есть делать общие выводы на основе частных наблюдений; разработка таких алгоритмов также требует значительных интеллектуальных усилий;
  • процессы переработки сырых данных в информацию , а информации в знания уже не могут быть выполнены по старинке вручную, и требуют нетривиальной автоматизации.

Необходимость интеллектуального анализа данных возникла в конце XX века в результате повсеместного распространения информационных технологий, позволяющих детально протоколировать процессы бизнеса и производства.

По составу решаемых задач Data Mining практически не отличается от стандартного набора средств, применяемых с середины XX века в области прикладной статистики , машинного обучения (machine learning), информационного поиска (information retrieval). Основное различие заключается в эффективности алгоритмов и технологичности их применения. Подавляющее большинство классических процедур имеют время выполнения, квадратичное или даже кубическое по объёму исходных данных. При количестве объектов, превосходящем несколько десятков тысяч, они работают неприемлемо медленно даже на самых современных компьютерах. За последние десятилетия значительные усилия в области Data Mining были направлены на создание специализированных алгоритмов, способных выполнять те же задачи за линейное или даже логарифмическое время без существенной потери точности.

Английский термин «Data Mining» не имеет однозначного перевода на русский язык (добыча данных, вскрытие данных, информационная проходка, извлечение данных/информации) поэтому в большинстве случаев используется в оригинале. Наиболее удачным непрямым переводом считается термин «интеллектуальный анализ данных» (ИАД).

ИАД включает методы и модели статистического анализа и машинного обучения , дистанцируясь от них в сторону автоматического анализа данных. Инструменты ИАД позволяют проводить анализ данных предметными специалистами (аналитиками), не владеющими соответствующими математическими знаниями.

Задачи, решаемые ИАД

  1. Классификация - отнесение входного вектора (объекта, события, наблюдения) к одному из заранее известных классов.
  2. Кластеризация - разделение множества входных векторов на группы (кластеры) по степени «похожести» друг на друга.
  3. Сокращение описания - для визуализации данных, лаконизма моделей, упрощения счета и интерпретации, сжатия объемов собираемой и хранимой информации.
  4. Ассоциация - поиск повторяющихся образцов. Например, поиск «устойчивых связей в корзине покупателя» (англ. market basket analysis ) - вместе с пивом часто покупают орешки.
  5. Анализ отклонений - Например, выявление нетипичной сетевой активности позволяет обнаружить вредоносные программы.
  6. Визуализация

В литературе можно встретить еще ряд классов задач. Базовыми задачами являются первые три. Остальные задачи сводятся к ним тем или иным способом.

Также можно использовать сводные задачи под основу

Алгоритмы обучения

Для задач классификации характерно «обучение с учителем », при котором построение (обучение) модели производится по выборке содержащей входные и выходные векторы.

Для задач кластеризации и ассоциации применяется «обучение без учителя », при котором построение модели производится по выборке, в которой нет выходного параметра. Значение выходного параметра («относится к кластеру …», «похож на вектор …») подбирается автоматически в процессе обучения.

Для задач сокращения описания характерно отсутствие разделения на входные и выходные векторы . Начиная с классических работ К. Пирсона по методу главных компонент , основное внимание здесь уделяется аппроксимации данных.

Этапы обучения

Можно выделить типичный ряд этапов решения задач методами ИАД:

  1. Формирование гипотезы;
  2. Сбор данных;
  3. Подготовка данных (фильтрация);
  4. Выбор модели;
  5. Подбор параметров модели и алгоритма обучения;
  6. Обучение модели (автоматический поиск остальных параметров модели);
  7. Анализ качества обучения, если неудовлетворительный переход на п. 5 или п. 4;
  8. Анализ выявленных закономерностей, если неудовлетворительный переход на п. 1, 4 или 5.

См. также

Литература

  • Паклин Н.Б., Орешков В.И. Бизнес-аналитика: от данных к знаниям (+ СD). . - СПб: Изд. Питер, 2009. - 624 с.
  • Айвазян С.А., Бухштабер В.М., Енюков Е.С., Мешалкин Л.Д. Прикладная статистика. Классификация и снижение размерности . - М.: Финансы и статистика, 1989. - 608 с.
  • Дюк В., Самойленко А. Data Mining: учебный курс (+CD).. - СПб: Изд. Питер, 2001. - 368 с.
  • Журавлёв Ю.И. , Рязанов В.В., Сенько О.В. "РАСПОЗНАВАНИЕ.Математические методы.Программная система.Практические применения", к книге прилагается компакт-диск с демоверсией программной системы «РАСПОЗНАВАНИЕ» . - М.: Изд. «Фазис», 2006. - 176 с. - ISBN 5-7036-0106-8
  • Зиновьев А. Ю. Визуализация многомерных данных . - Красноярск: Изд. Красноярского государственного технического университета, 2000. - 180 с.
  • Чубукова И. А. Data Mining: учебное пособие . - М.: Интернет-университет информационных технологий: БИНОМ: Лаборатория знаний, 2006. - 382 с. - ISBN 5-9556-0064-7

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Интеллектуальный анализ данных" в других словарях:

    В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка… … Википедия

    Топологический анализ данных новая область теоретических исследований для задач анализа данных (Data mining) и компьютерного зрения. Основные вопросы: Как из низкоразмерных представлений получать структуры высоких размерностей; Как… … Википедия

    Процесс получения высококачественной информации из текста на естественном языке. Как правило, для этого применяется статистическое обучение на основе шаблонов: входной текст разделяется с помощью шаблонов, затем производится обработка полученных… … Википедия

    интеллектуальный учет электроэнергии - [Интент] Учет электроэнергии Понятия «интеллектуальные измерения» (Smart Metering), «интеллектуальный учет», «интеллектуальный счетчик», «интеллектуальная сеть» (Smart Grid), как все нетехнические,… … Справочник технического переводчика

    У этого термина существуют и другие значения, см. Капитал (значения). Эта статья должна быть полностью переписана. На странице обсуждения могут быть пояснения … Википедия

    Обычный агент … Википедия

    Интеллектуальный анализ данных (англ. Data Mining) выявление скрытых закономерностей или взаимосвязей между переменными в больших массивах необработанных данных. Подразделяется на задачи классификации, моделирования и прогнозирования и другие.… … Википедия

    Для улучшения этой статьи по математике желательно?: Проставив сноски, внести более точные указания на источники. Исправить статью согласно стилистическим правилам Википедии. Переработать офо … Википедия

    Мониторинг сетей целенаправленное воздействие на сеть, осуществляемое для организации ее функционирования по заданной программе: включение и отключение системы, каналов передачи данных, терминалов, диагностика неисправностей, сбор… … Википедия

    Не следует путать с Извлечение информации. Data Mining (рус. добыча данных, интеллектуальный анализ данных, глубинный анализ данных) собирательное название, используемое для обозначения совокупности методов обнаружения в данных ранее… … Википедия

Книги

  • Интеллектуальный анализ данных в системах поддержки принятия решений. Моделирование слабоструктурированных временных рядов и нечеткая оценка инвестиционных проектов , Рамин Рзаев. Предлагаемая читателю книга посвящена решению проблем, направленных на разработку методов и алгоритмов решения задач прогнозирования и принятия решений в условиях неопределенности и комплекса…


Просмотров