Поверхности и тела вращения. III Вычисление объёмов тел вращения

Цилиндр

Цилиндром называется тело, которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов.

Круги называются основаниями цилиндра, а отрезки, соединяющими цилиндра.

Так как параллельный перенос есть движение, то основания цилиндра равны.

Так как при параллельном переносе плоскость переходит в параллельную плоскость (или в себя), то у цилиндра основания лежат в параллельных плоскостях. Так как при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то у цилиндра образующие параллельны и равны.

Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих.

Цилиндр называется прямым, если его образующие перпендикулярны плоскостям основания.

Радиусом цилиндра называется радиус его основания. Высотой цилиндра называется расстояние между плоскостями его оснований. Осью цилиндра называется прямая, проходящая через центры оснований. Она параллельна образующим.

Конус

Конусом называется тело, которое состоит из круга – основания конуса, точки, не лежащей в плоскости этого круга, – вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания.

Отрезки, соединяющие вершину конуса с точьками окружности основания, называются образующими конуса. Поверхность конуса состоит из основания и боковой поверхности.

Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания.

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого кругового конуса называется прямая, содержащая его высоту

Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки. Эта точка называется центром шара, а данное расстояние радиусом шара.

Граница шара называется шаровой поверхностью, или сферой.

Таким образом, точками сферы являются все точки шара, которые удалены от центра на расстояние, равное радиусу. Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, также называется радиусом.

Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром. Концы любого диаметра называются диаметрально противоположными точками шара.

Шар, так же как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра как оси.

Призма называется вписанной в цилиндр, если основание её равные многоугольники, вписанные в основание цилиндра, а боковые рёбра являются образующими цилиндра.


Призма называется описанной около цилиндра, если осно­вание её – это многоугольники описанные около основания цилиндра, а боковые грани касаются цилиндра.

Шаровой или сферической поверхностью называется геометрическое место точек пространст­ва, удаленных от данной точки О (центра) на заданное расстоя­ние R (радиус). Все пространство по отношению к данной ша­ровой поверхности разбивается на внут­реннюю область (куда можно присоеди­нить и точки самой поверхности) и внешнюю. Первая из этих областей назы­вается шаром. Итак, шар - геометрическое место всех точек, удаленных от заданной точки О (центра) на расстоя­ние, не превышающее данной величины R (радиуса). Шаровая поверхность яв­ляется границей, отделяющей шар от ок­ружающего пространства.

Шаровую поверхность и шар можно получить также, вращая окружность (круг) вокруг одного из диаметров.

Рассмотрим окружность с центром О и радиусом R (рис. 1), лежащую в плоско­сти Я. Будем вращать ее вокруг диаметра АВ. Тогда каждая из точек окружности, например М, в свою оче­редь опишет при вращении окружность, имеющую своим центром точку М 0 -проекцию вращающейся точки М на ось враще­ния АВ. Плоскость этой окружности перпендикулярна к оси вращения. Радиус ОМ, ведущий из центра исходной окружности в точку М, будет сохранять свою величину во все время вра­щения, и потому точка М все время будет находиться на сфе­рической поверхности с центром О и радиусом R. Шаровая поверхность может быть получена вращением окружности вокруг любого из ее диаметров.

Сам шар как тело получается вращением круга; ясно, что для получения всего шара достаточно вращать полукруг около ограничивающего его диаметра.

Пусть T - тело вращения, образованное вращением вокруг оси абсцисс криволинейной трапеции, расположенной в верхней полуплоскости и ограниченной осью абсцисс, прямыми x=a и x=b и графиком непрерывной функции y=f(x) .

Докажем, что это тело вращения кубируемо и его объем выражается формулой

V=\pi \int\limits_{a}^{b} f^2(x)\,dx= \pi \int\limits_{a}^{b}y^2\,dx\,.

Сначала докажем, что это тело вращения регулярно, если в качестве \Pi выберем плоскость Oyz , перпендикулярную оси вращения. Отметим, что сечение, находящееся на расстоянии x от плоскости Oyz , является кругом радиуса f(x) и его площадь S(x) равна \pi f^2(x) (рис. 46). Поэтому функция S(x) непрерывна в силу непрерывности f(x) . Далее, если S(x_1)\leqslant S(x_2) , то это значит, что . Но проекциями сечений на плоскость Oyz являются круги радиусов f(x_1) и f(x_2) с центром O , и из f(x_1)\leqslant f(x_2) вытекает, что круг радиуса f(x_1) содержится в круге радиуса f(x_2) .


Итак, тело вращения регулярно. Следовательно, оно кубируемо и его объем вычисляется по формуле

V=\pi \int\limits_{a}^{b} S(x)\,dx= \pi \int\limits_{a}^{b}f^2(x)\,dx\,.

Если бы криволинейная трапеция была ограничена и снизу и сверху кривыми y_1=f_1(x), y_2=f_2(x) , то

V= \pi \int\limits_{a}^{b}y_2^2\,dx- \pi \int\limits_{a}^{b}y_1^2\,dx= \pi\int\limits_{a}^{b}\Bigl(f_2^2(x)-f_1^2(x)\Bigr)dx\,.

Формулой (3) можно воспользоваться и для вычисления объема тела вращения в случае, когда граница вращающейся фигуры задана параметрическими уравнениями. В этом случае приходится пользоваться заменой переменной под знаком определенного интеграла.

В некоторых случаях оказывается удобным разлагать тела вращения не на прямые круговые цилиндры, а на фигуры иного вида.

Например, найдем объем тела, получаемого при вращении криволинейной трапеции вокруг оси ординат . Сначала найдем объем, получаемый при вращении прямоугольника с высотой y#, в основании которого лежит отрезок . Этот объем равен разности объемов двух прямых круговых цилиндров

\Delta V_k= \pi y_k x_{k+1}^2- \pi y_k x_k^2= \pi y_k \bigl(x_{k+1}+x_k\bigr) \bigl(x_{k+1}-x_k\bigr).

Но теперь ясно, что искомый объем оценивается сверху и снизу следующим образом:

2\pi \sum_{k=0}^{n-1} m_kx_k\Delta x_k \leqslant V\leqslant 2\pi \sum_{k=0}^{n-1} M_kx_k\Delta x_k\,.

Отсюда легко следует формула объёма тела вращения вокруг оси ординат :

V=2\pi \int\limits_{a}^{b} xy\,dx\,.

Пример 4. Найдем объем шара радиуса R .

Решение. Не теряя общности, будем рассматривать круг радиуса R с центром в начале координат. Этот круг, вращаясь вокруг оси Ox , образует шар. Уравнение окружности имеет вид x^2+y^2=R^2 , поэтому y^2=R^2-x^2 . Учитывая симметрию круга относительно оси ординат, найдем сначала половину искомого объема

\frac{1}{2}V= \pi\int\limits_{0}^{R}y^2\,dx= \pi\int\limits_{0}^{R} (R^2-x^2)\,dx= \left.{\pi\!\left(R^2x- \frac{x^3}{3}\right)}\right|_{0}^{R}= \pi\!\left(R^3- \frac{R^3}{3}\right)= \frac{2}{3}\pi R^3.

Следовательно, объем всего шара равен \frac{4}{3}\pi R^3 .


Пример 5. Вычислить объем конуса, высота которого h и радиус основания r .

Решение. Выберем систему координат так, чтобы ось Ox совпала с высотой h (рис. 47), а вершину конуса примем за начало координат. Тогда уравнение прямой OA запишется в виде y=\frac{r}{h}\,x .

Пользуясь формулой (3), получим:

V=\pi \int\limits_{0}^{h} y^2\,dx= \pi \int\limits_{0}^{h} \frac{r^2}{h^2}\,x^2\,dx= \left.{\frac{\pi r^2}{h^2}\cdot \frac{x^3}{3}}\right|_{0}^{h}= \frac{\pi}{3}\,r^2h\,.

Пример 6. Найдем объем тела, полученного при вращении вокруг оси абсцисс астроиды \begin{cases}x=a\cos^3t\,\\ y=a\sin^3t\,.\end{cases} (рис. 48).


Решение. Построим астроиду. Рассмотрим половину верхней части астроиды, расположенной симметрично относительно оси ординат. Используя формулу (3) и меняя переменную под знаком определенного интеграла, найдем для новой переменной t пределы интегрирования.

Если x=a\cos^3t=0 , то t=\frac{\pi}{2} , а если x=a\cos^3t=a , то t=0 . Учитывая, что y^2=a^2\sin^6t и dx=-3a\cos^2t\sin{t}\,dt , получаем:

V=\pi \int\limits_{a}^{b} y^2\,dx= \pi \int\limits_{\pi/2}^{0} a^2\sin^6t \bigl(-3a\cos^2t\sin{t}\bigr)\,dt= \ldots= \frac{16\pi}{105}\,a^3.

Объем всего тела, образованного вращением астроиды, будет \frac{32\pi}{105}\,a^3 .

Пример 7. Найдем объем тела, получаемого при вращении вокруг оси ординат криволинейной трапеции, ограниченной осью абсцисс и первой аркой циклоиды \begin{cases}x=a(t-\sin{t}),\\ y=a(1-\cos{t}).\end{cases} .

Решение. Воспользуемся формулой (4): V=2\pi \int\limits_{a}^{b}xy\,dx , и заменим переменную под знаком интеграла, учитывая, что первая арка циклоиды образуется при изменении переменной t от 0 до 2\pi . Таким образом,

\begin{aligned}V&= 2\pi \int\limits_{0}^{2\pi} a(t-\sin{t})a(1-\cos{t})a(1-\cos{t})\,dt= 2\pi a^3 \int\limits_{0}^{2\pi} (t-\sin{t})(1-\cos{t})^2\,dt=\\ &= 2\pi a^3 \int\limits_{0}^{2\pi}\bigl(t-\sin{t}- 2t\cos{t}+ 2\sin{t}\cos{t}+ t\cos^2t- \sin{t}\cos^2t\bigr)\,dt=\\ &= \left.{2\pi a^3\!\left(\frac{t^2}{2}+ \cos{t}- 2t\sin{t}- 2\cos{t}+ \sin^2t+ \frac{t^2}{4}+ \frac{t}{4}\sin2t+ \frac{1}{8}\cos2t+ \frac{1}{3}\cos^3t\right)}\right|_{0}^{2\pi}=\\ &= 2\pi a^3\!\left(2\pi^2+1-2+\pi^2+\frac{1}{8}+ \frac{1}{3}-1+2- \frac{1}{8}- \frac{1}{3}\right)= 6\pi^3a^3. \end{aligned}

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Задание 16 ЕГЭ 2015.Тела вращения.

Иванова Е.Н.

МБОУ СОШ №8 г. Каменск-Шахтинский


Отрезок AB c , параллельной этому отрезку и отстоящей от него на расстояние, равное 2. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью вращения является боковая поверхность цилиндра, радиус основания которого равен 2, образующая равна 1. Площадь этой поверхности равна 4 .


Отрезок AB длины 1 вращается вокруг прямой c , перпендикулярной этому отрезку и отстоящей от ближайшего его конца A на расстояние, равное 2 (прямые AB и с лежат в одной плоскости). Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является кольцо, внутренний радиус которого равен 2, а внешний – 3. Площадь этого кольца равна 5 .


Отрезок AB c , перпендикулярной этому отрезку и проходящей через его середину. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является круг радиуса 1. Его площадь равна.


Отрезок AB длины 2 вращается вокруг прямой c A . Найдите площадь поверхности вращения.


Отрезок AB c , перпендикулярной этому отрезку и проходящей через точку C , делящей этот отрезок в отношении 1:2. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является круг радиуса 2. Его площадь равна 4 .


Отрезок AB длины 2 вращается вокруг прямой c , проходящей через точку A и образующей с этим отрезком угол 30 о. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является боковая поверхность конуса, образующая которого равна 2, радиус основания равен 1. Ее площадь равна 2 .


Отрезок AB длины 3 вращается вокруг прямой c , проходящей через точку A и отстоящей от точки B на расстояние, равное 2. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является боковая поверхность конуса, образующая которого равна 3, радиус основания равен 2. Ее площадь равна 6 .


Отрезок AB длины 2 вращается вокруг прямой c , проходящей через середину этого отрезка и образующей с ним угол 30 о. Найдите площадь поверхности вращения.

Ответ. Искомая поверхность составлена из двух боковых поверхностей конусов, образующие которых равны 1, а радиусы оснований – 0,5. Ее площадь равна.


Отрезок AB длины 3 вращается вокруг прямой c , проходящей через точку C , делящей этот отрезок в отношении 1:2 и образующей с ним угол 30 о. Найдите площадь поверхности вращения.

Ответ. Искомая поверхность составлена из двух боковых поверхностей конусов, образующие которых равны 2 и 1, а радиусы оснований равны соответственно 1 и 0,5. Ее площадь равна 2,5 .


Отрезок AB длины 3 вращается вокруг прямой c , лежащей с ним в одной плоскости и отстоящей от концов A и B соответственно на расстояния 1 и 2. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является боковая поверхность усеченного конуса, образующая которого равна 3, радиусы оснований равны 1 и 2. Ее площадь равна 9 .


Отрезок AB длины 2 вращается вокруг прямой c , лежащей с ним в одной плоскости, отстоящей от ближайшего конца A на расстояние, равное 1, и образующей с этим отрезком угол 30 о. Найдите площадь поверхности вращения.

Ответ. Искомой поверхностью является боковая поверхность усеченного конуса, образующая которого равна 2, радиусы оснований равны 1 и 2. Ее площадь равна 6 .


Найдите площадь боковой поверхности цилиндра, полученного вращением единичного квадрата ABCD вокруг прямой AD .

Ответ. Искомый цилиндр изображен на рисунке. Радиус его основания и образующая равны 1. Площадь боковой поверхности этого цилиндра равна 2 .


Найдите площадь поверхности вращения прямоугольника ABCD со сторонами AB = 4, BC = 3 вокруг прямой AB и CD .

Ответ. Искомым телом является цилиндр, радиус основания которого равен 2, а образующая равна 3. Его площадь поверхности равна 20 .


Найдите площадь поверхности тела, полученного вращением единичного квадрата ABCD вокруг прямой AC .

Ответ. Искомым телом вращения является объединение двух конусов, радиусы оснований которого и высоты равны. Его площадь поверхности равна.


Найдите площадь поверхности тела, полученного вращением прямоугольного треугольника ABC с катетами AC = BC = 1 вокруг прямой AC .

Ответ. Искомый конус изображен на рисунке. Радиус его основания равен 1, а образующая равна. Площадь поверхности этого конуса равна.


Найдите площадь полной поверхности тела, полученного вращением равностороннего треугольника ABC со стороной 1 вокруг прямой, содержащей биссектрису CD этого треугольника.

Ответ. Искомый конус изображен на рисунке. Радиус его основания равен 0,5, а образующая равна 1. Площадь полной поверхности этого конуса равна 3 /4.


Найдите площадь поверхности вращения равностороннего треугольника ABC со стороной 1 вокруг прямой AB .

Ответ. Искомое тело вращения составлено из двух конусов с общим основанием, радиус которого равен, а высоты – 0,5. Его площадь поверхности равна.


Найдите объем тела вращения равнобедренной трапеции ABCD с боковыми сторонами AD и BC , равными 1, и основаниями AB и CD , равными соответственно 2 и 1, вокруг прямой AB .

Ответ. Искомым телом вращения является цилиндр с радиусом основания и высотой 1, на основаниях которого достроены конусы, высотой 0,5. Его объем равен.


Найдите объем тела вращения прямоугольной трапеции ABCD с основаниями AB и CD , равными соответственно 2 и 1, меньшей боковой стороной, равной 1, вокруг прямой AB .

Ответ. Искомым телом вращения является цилиндр с радиусом основания и высотой, равными 1, на основании которого достроен конус, высотой 1. Его объем равен.


Найдите объем тела вращения правильного шестиугольника ABCDEF со стороной 1 вокруг прямой AD .

Ответ. Искомое тело вращения состоит из цилиндра, радиус основания которого равен, а высота равна 1 и двух конусов с основаниями радиуса и высотой 0,5. Его объем равен.


ABCDEF , изображенного на рисунке и составленного из трех единичных квадратов, вокруг прямой AF .

Ответ. Искомое тело вращения состоит из двух цилиндров с основаниями радиусов 2 и 1, высотой 1. Его объем равен 5 .


Найдите объем тела вращения многоугольника ABCDEFGH , изображенного на рисунке и составленного из четырех единичных квадратов, вокруг прямой c , проходящей через середины сторон AB и EF .

Ответ. Искомое тело вращения составлено из двух цилиндров высотой 1 и радиусами оснований 1,5 и 0,5. Его объем равен 2,5 .


Найдите объем тела вращения многоугольника ABCDEFGH , изображенного на рисунке и составленного из пяти единичных квадратов, вокруг прямой c , проходящей через середины сторон AB и EF .

Ответ. 1. Искомое тело вращения является цилиндром с радиусом основания 1,5 и высотой 2, из которого вырезан цилиндр с радиусом основания 0,5 и высотой 1. Его объем равен 4,25 .


Найдите объем тела вращения единичного куба ABCDA 1 B 1 C 1 D 1 вокруг прямой AA 1 .

Ответ. Искомым телом вращения является цилиндр, радиус основания которого равен, а высота равна 1. Его объем равен 2 .


Найдите объем тела вращения правильной треугольной призмы ABCA 1 B 1 C AA 1 .

Ответ. Искомым телом вращения является цилиндр, радиус основания и высота которого равны 1. Его объем равен.


Найдите объем тела вращения правильной шестиугольной призмы ABCDEFA 1 B 1 C 1 D 1 E 1 F 1 , все ребра которой равны 1, вокруг прямой AA 1 .

Ответ. Искомым телом вращения является цилиндр, радиус основания которого равен 2, а высота равна 1. Его объем равен 4 .


Найдите объем тела вращения правильной четырехугольной пирамиды SABCD , все ребра которой равны 1, вокруг прямой с , содержащей высоту SH этой пирамиды.

Ответ. Искомым телом вращения является конус, радиус основания и высота которого равны.

Его объем равен.


Найдите объем тела вращения единичного тетраэдра ABCD вокруг ребра AB .

Ответ. 1. Искомое тело вращения составлено из двух конусов с общим основанием радиуса и высотой 0,5. Его объем равен 0,25 .


Найдите объем тела вращения единичного правильного октаэдра S’ABCDS” вокруг прямой S"S” .

Ответ. Искомое тело вращения состоит из двух конусов с общим основанием радиуса и высотами, равными. Его объем равен.


Все двугранные углы многогранника, изображенного на рисунке, прямые. Найдите объем тела вращения этого многогранника вокруг прямой AD .

Ответ. Искомым телом вращения является цилиндр, радиус основания которого равен, а высота равна 2. Его объем равен 10 .



Просмотров