Спасение экипажей затонувших подводных лодок. Подводные спасатели

HTML clipboard

Спасение экипажей терпящих бедствие подводных лодок

Капитан 2 ранга В. Мосалёв

В истории подводного плавания отмечено 170 случаев гибели подводных лодок с экипажами, произошедших в результате столкновений с другими кораблями, поломок материальной части, пожаров, взрывов, по вине личного состава и другим причинам. В 85 проц. случаев подводные лодки находились в акваториях с глубинами, не превышавшими предельные, на которых прочный корпус мог выдерживать забортное давление воды.

Обеспечение безопасности ПЛ традиционно осуществляется по трем направлениям: повышение живучести подводных лодок и улучшение систем жизнеобеспечения экипажей, разработка новых средств поиска, обнаружения и обозначения аварийных ПЛ. совершенствование существующих и создание новых средств и способов спасения. Комплексная реализация действий по этим направлениям вместе с другими мероприятиями организационно-технического характера позволяет снизить опасность подводного плавания, а в случае аварии - повысить вероятность спасения экипажей. Конструктивные особенности ПЛ, имеющей водонепроницаемые отсеки, как правило, предусматривают сохранение ее плавучести при затоплении одного из них и сохранение герметичности каждого отсека при затоплении двух соседних. Благодаря этому, члены экипажа ПЛ, находящиеся в незатопленных отсеках, могут сохранить жизнь в течение нескольких суток.

В ВМС стран НАТО принята единая система оповещения о терпящих бедствие, в соответствии с которой в мирное время командир ПЛ докладывает о погружении специальным донесением с указанием контрольного времени, по истечении которого он должен доложить о всплытии. Обычно при длительном погружении оно составляет 24, 36 или 72 ч. Если нет доклада о всплытии, то объявляется режим ее потери (submiss) и дается команда по средствам связи этой подводной лодки о срочном всплытии и выходе на связь. В случае отсутствия ответа после этого в течение часа - объявляется режим аварии лодки (subsunk) и силам поиска и спасения (СПС) объявляется тревога.

Поскольку в повседневных условиях ПЛ либо одиночно отрабатывает задачи в полигоне с определенными координатами, либо участвует в учениях, находясь в строго ограниченном районе, поиск пропавшей ПЛ ведется в сравнительно небольшой акватории. Переходы в базу и из одного полигона в другой ПЛ осуществляет по фарватерам, как правило, в надводном положении, а при океанских переходах - по заранее определенным маршрутам с выдерживанием графика прохождения контрольных точек. В этих обстоятельствах место аварийной ПЛ может быть определено по счислению. Кроме того, оно может быть указано по данным гидроакустических систем слежения за ПЛ, развернутых на важнейших морских и океанских ТВД. Определение точного места терпящей бедствие ПЛ (ТБПЛ) упрощается с передачей от нее сигнала бедствия или с обнаружением ее аварийного буя, а также по данным докладов со столкнувшегося с ней корабля или с наблюдавших аварию судов, кораблей или самолетов (все ПЛ снабжены аварийными буями, которые связаны с корпусом лодки буйрепом и телефонным кабелем и автоматически отделяются от нее, всплывая на поверхность при достижении ТБПЛ определенной глубины, ударе о грунт, либо вручную из лодки).

Аварийный буй снабжен проблесковыми маячковыми огнями, телефоном для связи с экипажем лежащей на грунте ТБПЛ, а также KB и УКВ радиостанциями, которые автоматически включаются при всплытии буя, передавая сигналы бедствия. Так, на буях английских ПЛ установлены KB и УКВ передатчики, работающие на международных радиочастотах "SOS" в течение 3 с каждые 2 мин, дальность приема сигналов составляет, соответственно, 50 и 20 миль, аккумуляторная батарея обеспечивает непрерывную работу передатчиков в течение 72 ч. Французские аварийные буи передают сигнал бедствия в течение 1 мин каждые 10 мин, а канадские, кроме этого, создают на поверхности воды оранжевое пятно и выпускают жидкость, отпугивающую акул. Шведские ПЛ оснащены гидроакустическим маяком. Новейшие аварийные буи оборудованы системой PLB (Personal Locator Beacon), позволяющей использовать международную спутниковую систему спасения "Коспас - Сар-сат", в состав которой входят спутники на полярной и геостационарных орбитах и сеть береговых приемных станций. Буйковая часть системы представляет собой радиомаяк-локатор, состоящий из приемника спутниковой навигации GPS и УКВ приемопередатчика. С задействованием аварийного буя, на международных частотах бедствия 121,5 и 243 МГц передается сигнал бедствия, опознавательное обозначение ПЛ и ее координаты, которые ретранслируясь спутником, принимаются береговой станцией системы.

Спасение экипажей затонувших ТБПЛ осуществляется либо с использованием собственных средств, либо с помощью средств СПС. В первом случае оно проводится методом всплытия с индивидуальными или коллективными средствами спасения.

Индивидуальные средства спасения применяются для всплытия с глубин не превышающих 180 м. К ним относятся специальные устройства, состоящие из спасательного жилета и дыхательного аппарата, позволяющие находиться под водой до 40 мин, например, используемый во многих странах (рис. 1) английский спасательный гидрокостюм Mk8 SEIS (Submarine Escape Immersion Suit), который полностью изолирует человека от внешней среды и состоит из надувного капюшона с прозрачной лицевой частью с герметичной застежкой, надувного спасательного жилета и утепленного гидрокомбинезона. Модификации этого гидрокостюма (Mk8S, Mk8V), используемые в ВМС Швеции, имеют ряд изменений, улучшающих условия пребывания в нем более длительное время, а также придается надувная лодка.

Выход личного состава из ТБПЛ осуществляется через так называемую башенную систему спасения TES (Tower Escape System), включающую носовую и кормовую доковые камеры и устройство подачи воздуха в гидрокостюмы. Камеры (рис. 2) имеют входной и выходной люки, устройства заполнения водой и осушения, выравнивания давления. Люки открываются и закрываются как из камеры, так и из ПЛ. Выходной люк открывается после выравнивания давления воды с забортным. Система обеспечивает выход спасаемых с интервалом 3 мин.

К коллективным средствам относятся различные всплывающие спасательные устройства (ВСУ - Self Rescue Sphere) многократного или однократного действия, предусматривающие спасение подводников "сухим" способом, не требующим декомпрессии. Так, на индийских ПЛ типа "Шишумар" (немецкий проект 209) используется ВСУ. позволяющее разместить 40 человек (весь экипаж) и обеспечивающее спасение с глубин до 260 м (рис. 3).

Силы поиска и спасения могут включать подразделения экстренной помощи ТБПЛ, спасательные суда ПЛ и глубоководные спасательные аппараты. В ВМС Великобритании для оказания экстренной помощи ТБПЛ имеется специальная подводно-парашютная группа - SPAG (Subsunk Parachute Assistance Group). Группа может выделить одновременно несколько команд, численностью по шесть человек (офицер, старшина-спасатель, врач, фельдшер, два рулевых-моториста надувных лодок). В район ТБПЛ команда доставляется самолетом С-130 "Геркулес", десантируется с парашютами на воду с двумя надувными лодками "Джемини" и средствами связи (рис. 4). В ВМС США для оказания первой экстренной помощи также могут использоваться подводно-парашютные команды, выделяемые группами подводных подрывных работ. Численность определяется обстановкой и обычно составляет четыре человека. Команды используют надувные лодки "Зодиак". Кроме того, по одному мобильному спасательному отряду MDSU (Mobile Diving and Salvage Unit) имеются на Тихоокеанском флоте (базируется в ВМБ Перл-Харбор) и на Атлантическом (ВМБ Литтл-Крик). Каждый отряд, численностью 120 человек, может выделить одновременно четыре автономные спасательные команды. На вооружении команды имеется транспортируемый водолазный комплекс FADS (Fly-Away Diving System) массой 1 т, обеспечивающий одновременную работу двух водолазов на глубинах до 58 м.

Таблица 1 ТТХ спасательных судов
Основные ТТХ СПС ПЛ ASR-22 "Ортолан" (США) СПС ПЛ ASR-46 "Киттиуэйк" (США) СПС ATS-1 "Эдентон" (США) СПС А5309 "Антео" (Италия) СПС ПЛ "Канша" (КНР)
Полное водоизмещение, т 4 570 2 320 2 329 3 200 1325
Размерения, м:
-длина 76,5 76,7 56,1 98,4 69,9
- ширина 26,2 13,4 15,2 15,8 10,2
- осадка 6,5 4,9 4,6 5,1 3,6
Скорость хода, уз 15 15 16 20 13,5
Дальность плавания, мили (при скорости хода, уз) 8 500(13,8) ( ) 1000(13) 4 000 (14) 2 400(13)
Количество двигателей 4 4 4 2 2
Общая мощность, л. с. 6 000 3 000 6 000 5 000 2 200
Экипаж, человек 195 103 129 121
Спасательные средства:
- глубоководные аппараты 2DSRV СМПЛ "Усел" 1 SM-358-S 2
- водолазные системы Мк2 Мк2 ЗМк1
- водолазные колокола +
- декомпрессионные камеры 2 2 3 2 +
- транспортировочные капсулы 2 2 3
Глубина обеспечения спасательных работ, м 259 259 259 300
Подъемные краны, т + + 10; 20 + 15; 2
Год постройки 1973 1946 1972 1980 1981
1 СМПЛ "Усел": экипаж два человека, водоизмещение 13,2 т, размерения 8х1,9х2,7 м, глубина погружения до 600 м, автономность 120 ч, скорость хода 5 уз.
2 ГСА SM-358-S: экипаж пять человек, длина 7 м, глубина погружения 300 м

Для спасения экипажей ТБПЛ используются также специальные суда. В ВМС США два СПС ПЛ ("Ортолан", "Киттиуэйк") и три СПС типа "Эдентон", в ВМС Италии - СПС "Антео", в КНР - СПС ПЛ типа "Канша" (основные ТТХ в таблице 1).

Глубоководные спасательные аппараты (ГСА) имеются в США, Великобритании, Франции, Италии, Швеции, Японии, Австралии, КНР (основные ТТХ в таблице 2).

В ВМС США используются два ГСА типа DSRV (Deep Submergence Rescue Vehicle) -DSRV-1 "Мистик" и DSRV-2 "Эвелон", входящие в состав первой группы опытовых ПЛ, (ВМБ Сан-Диего), основной задачей которой является проведение аварийно-спасательных операций. Команды ГСА осуществляют поочередное двухмесячное дежурство, находясь в двухчасовой готовности. В течение суток такой ГСА может быть переброшен по воздуху в любой район мирового океана. Для доставки ГСА к месту ТБПЛ могут использоваться СПС "Ортолан" (ASR-22) и 21 ПЛА (11 - на Атлантике, 10 - на Тихом океане). Доставку по воздуху ГСА. вспомогательного оборудования и команды обслуживания (три офицера, 13 старшин и матросов) осуществляют либо четыре С-141 "Старлифтер" или С-5А "Гэлэкси" и С-141.

ГСА доставляется на ближайший к месту аварии аэродром, перевозится в ближайшую ВМБ или порт и грузится на ПЛА-носитель, которая доставляет его к месту аварии и выпускает его в подводном положении (рис. 5). За один рейс ГСА эвакуирует 24 человека и за 14-17 часов способен поднять весь экипаж ПЛА численностью до 150 человек. ГСА торпедообразной формы имеет легкий корпус из

английской ПЛАРБ "Резолюшн" стеклопластика и прочный - из высокопрочной стали, состоящий из трех сферических отсеков и полусферического переходного устройства внизу среднего отсека. Отсеки соединены переходными люками, а средний, кроме того, имеет верхний выходной люк и нижний люк в стыковочную камеру. В носовом отсеке находятся системы управления и экипаж ГСА, а в среднем и кормовом -личный состав спасаемого экипажа. Каждый отсек имеет автономную систему жизнеобеспечения: носовой - на два человека в течение 12 ч при суточном резерве, в среднем и кормовом - на 13 человек в течение 2 ч. Кроме того, в каждом отсеке предусмотрена аварийная дыхательная система замкнутого цикла: в носовом для двух человек на шесть часов, в кормовом на 26 человек на 2 ч. ГСА оснащен манипулятором, иллюминатором для визуального наблюдения и светильниками, двумя подводными ТВ-камерами, шестью ГАС, в том числе пассивной допплеровской и активной бокового обзора, шумопеленгаторами направленного и ближнего действия, навигационной и звукоподводной аппаратурой связи. При спасении экипажа ТБПЛ ГСА с помощью ГАС отыскивает лежащую на грунте ПЛ, используя подруливающие устройства подходит к ее носовому или кормовому спасательному люку и соединяется с ним стыковочным узлом переходного устройства. Если спасательный люк ТБПЛ загроможден обломками, то манипулятором он освобождается от обломков. Стыковка ГСА с ТБПЛ возможна при ее крене и дифференте до 45°. Стыковочный узел ГСА может быть применен для эвакуации экипажей ТБПЛ стран НАТО.

Таблица 2 ТТХ Глубоководных спасательных аппаратов
Основные ТТХ DSRV (США) LR5 (Великобритания) MSM1 (Италия) URF (Швеция) "Гриффон" ASRV (Австралия) "Тихиро" (Япония) ICA
Водоизмещение подводное, т 38 20 19,5 52 16,7 16,5 40
Размеренна, м:
- длина 15,2 9,6 10 13,5 7,8 5,5 12,4 15
- ширина (диаметр) 2,4 2,9 1,9 4,3 2 2,7 3,2 4
- высота 2,4 2,7 3 3,9 2 2,3 2,5 2,6
Скорость хода, уз 5 2 4 3 4 4 4
Дальность плавания, миль/уз 24/3 4/*
Экипаж, человек 4 2 3 6 2 * 6 4
Количество спасаемых человек 24 10 10 25 15 10 12 22
Глубина погружения, м:
- рабочая 700 457 300 300 547 500 200
- максимальная 1500 600 460 600 600 600
Автономность, ч 12 84 8 85 24 24 30
Год постройки 1975 1978 1980 1995 1985 1986
Срок эксплуатации до 2010 2003 2005

(Во второй части рассматриваются спас средства других иностранных государств)

Зарубежное военное обозрение №3 2000 С.50-54

Конспект интегрированного занятия по познавательному развитию

Там нет, к большому сожаленью

И льется грязная вода

Во владенья Нептуна.

Гибнет, гибнет жизнь на дне

Помогите, люди, мне!

В . Да, настоящая беда приключилась у морского царя.

Заглядывает в посылку. Достает бутылку с грязной водой, дети обнаруживают записку с «Образец воды с морского дна».

В . Да в такой воде конечно все живое погибнет. Что будем делать, ребята? Как нам помочь Нептуну? Как же можно очистить воду? У меня идея! Я случайно прихватила с собой свою передвижную лабораторию. Там есть все необходимое для проведения опытов. Помогите мне развернуть её.

Дети помогают воспитателю: расстилают клеенку, расставляют колбы с воронками, емкости для воды, коробочки с пиктограммами.

В . Посмотрите, у меня есть часы ученых. Оденьте их на руку. На них изображены части морских животных. Найдите на столе, колбу, на которой это животное изображено полностью, это будет ваше место для работы. Обращает внимание детей, что у них получились пары, значит, около каждой колбы будут работать два человека и им придется договариваться друг с другом.

В. Я налью вам немного воды в ваши мерные стаканчики, а вы будете переливать их потихоньку через фильтр и наблюдать, что же произойдет.

Дети проводят опыт, обмениваются впечатлениями.

В. Выберете из коробочки с пиктограммами те, что соответствуют вашему опыту и наклейте их на письмо: на первый кружочек пиктограмму с изображением фильтра, который вы использовали, на второй – что у вас получилось, как очистилась вода. Какой мы мажем сделать вывод? Лучше всего воду очищает активированный уголь с ватой. Давайте отметим это каким - нибудь значком.

Дети перечеркивают красным те фильтры, которые плохо очистили воду и рисуют восклицательный знак рядом с лучшим фильтром. В то время когда дети работают в лаборатории, воспитатель незаметно выкладывает на пол лист ватмана и изображением морского дна.

В. Замечательно мы справились с работой. Теперь надо поскорей отправить это письмо директору завода, чтобы он поставил очистные сооружения. Как можно сделать побыстрее? Выслушивает ответы детей. Ой, я совсем забыла. У меня же есть факс. Давайте отправим письмо по факсу и он сразу же попадет к директору завода.

Дети «отправляют» письмо.

В. (делает вид, что звонит директору завода). Алло, это директор завода бумажных изделий? Примите, пожалуйста факс. Мы отправляем вам письмо, которое поможет вам выбрать хороший фильтр для очистных сооружений. И, пожалуйста, поскорее установите эти сооружения на своем заводе, а то в море исчезает жизнь.

В. Ребята, а вы хотели побывать на морском дне, узнать, что же там происходит на самом деле? Садитесь в нашу «подводную лодку», отправляемся в царство Нептуна.

Дети встают в круг, берутся за руки.

В. Сейчас начнутся чудеса,

Закройте поскорей глаза

Раз, два, три, все замрем,

В мир подводный попадем.

Дети присаживаются, затем встают, открывают глаза.

В. Оглянитесь вокруг, вы ничего необычного не заметили? Обращает внимание на лист ватмана с изображением морского дна.

В . Посмотрите, правду сказал царь Нептун. Морское дно есть, а ни одного обитателя нет. Что же делать? Выслушивает ответы детей.

В. Да без волшебства здесь не обойтись. К счастью я прихватила с собой волшебные очки, которые помогут нам превратиться в настоящих волшебников и волшебный песок. Разбейтесь на пары по цвету ваших часов. Возьмите мешочек (контейнер) с таким же цветом значка. В нем цветной песок. Засыпайте им морское дно. Дети засыпают лист слоем разноцветного песка.

В . А теперь давайте потихоньку возьмем и стряхнем лишний песок в поднос.

Дети стряхивают лишний песок и видят, что на «Морском дне» появились морские обитатели: рыбки, морские звезды и т. п. Обитатели были наклеены из двухстороннего прозрачного скотча заранее. Песок приклеился к скотчу и рисунок проявился.

В . Да мы с вами настоящие волшебники, посмотрите какое замечательное морское дно у нас получилось. А вам не кажется, что рыбки вам улыбаются?

Если это рыбка, то у нее улыбка,

Если это рыбочка, то у нее ….(улыбочка)

Если это рыбища, то у нее … (улыбища)

Если это рыбонька, то у нее …(улыбонька)

В это время начинает звучать музыка. Воспитатель проводит психогимнастику «Подводный мир»

В . Представьте, что вы - морское дно. Оно спокойно и расслаблено. Оно - единое целое. Дотроньтесь до соседа справа и слева пальцами рук и ног. Перед вами вода. Много воды. Она прозрачная и сквозь неё видны солнечные блики. На морском дне тихо. Вода поглощает все звуки. Вот покачиваются водоросли . Они крепко ухватились корнями за морское дно (встать, подошвы прижать к полу, перебирать пальцами ног). Они равнодушны, спокойны, отдаются на волю движения воды (туловище раскачивать в стороны). Но вот на дне появилась стайка рыбок. Они дружные, куда один, туда все (соединив руки подушечками пальцев, делать руками плавные движения вправо, влево, бегая по залу за названным ребёнком стайкой). Рыбки очень любопытны (мимика), что там, а что здесь? Любят общаться, но не слышно, что они говорят (беззвучно открывают рот, разговаривая жестами). А дельфины добрые (мимика), весёлые (мимика), они любят выпрыгивать из воды с радостным криком (соединённые руки вверх, бег врассыпную с прыжками вверх на месте и радостным тонким выкриком - У - губы трубочкой. Хорошо на морском дне. Тихо шумят волны. Дети становятся в круг, взявшись за руки. На громкую музыку прибоя, взявшись за руки, подняв руки вверх, идут вперёд, на тихую - согнувшись, опустив руки, - назад. Музыка затихает.

В. Ну что же ребята, нам пора возвращаться в детский сад. Наша миссия выполнена. На морском дне опять кипит жизнь. Я думаю, что Царь Нептун будет доволен. Беритесь за руки, держитесь покрепче.

Волны, волны, расступитесь

Дети в детский вернитесь.

В. Ну вот мы с вами и вернулись в детский сад. Вы довольны нашим путешествием? А собой? Конечно, нам есть, чем гордиться, ведь мы же сделали большое дело. Обращает внимание на компьютер. Ой, ребята, на мой компьютер пришло сообщение. Давайте посмотрим, что там такое? Присаживайтесь, я включу компьютер.

На экране появляется Нептун (запись) и благодарит детей.

Нептун. Спасибо вам ребята. Благодаря вашему письму на заводе поставили хорошие очистные сооружения, и в мое море океан снова вернулась жизнь. В благодарность за ваше доброе дело я отправил вам гостинец. Вы найдете его в коробочке, на которой нарисована морская раковина. До свидания. Приезжайте ко мне в гости, я всегда буду вам рад. Дети находят в группе коробочку с угощением – конфетами «Морские камушки».

В. Ребята, мне очень понравилось с вами путешествовать. Я хочу на память о нашем путешествии подарить этих замечательных рыбок. Но у меня есть одно условие: тот кому больше понравилось быть ученым берет синюю, а тот кому больше понравилось быть волшебником – красную. (Дети могут взять обе рыбки, главное - объяснить свой выбор)

Самоанализ

Главная цель, которую я ставила перед собой на сегодняшнем мероприятии – дать детям почувствовать себя учеными, исследователями и немного волшебниками.

Работа в лаборатории была направлена на развитие познавательной активности, любознательности, Дети сами готовили свое рабочее место, с интересом экспериментировали, делали свои маленькие открытия, выводы, рассуждали, доказывали свое мнение. находили ответы на вопросы экспериментальным путем.

Хочется отметить высокий уровень развития интеллектуальных умений детей: они свободно оперировали с пиктограммами, составляли схему, находили целое по его части, доказывали свое мнение.

Удачно выбранная мотивация позволила мне вовлечь детей в решение экологической проблемы загрязнения воды доступными им способами.

Прием с волшебной картиной создал ситуацию для развития фантазии, воображения, дал возможность испытать радость творчества и волшебных превращений. Разноцветные очки усилили эффект волшебства. Словесная игра «Рыбкина улыбка» активизировала речевое словотворчество детей, вызвала желание экспериментировать со словом.

В психогимнастике дети учились, использовать невербальные средства (мимики, жесты, движения) для передачи эмоциональных состояний. Хочется отметить, что дети очень контактны, раскрепощены, эмоционально открыты. Умеют работать в коллективе и паре, договариваться, соотносить свои действия с партнером по игре.

В целом я удовлетворена детьми, собой и тем, что у нас с ребятами получилось,

Появление в 1961 году в составе Военно-Морского Флота СССР первого управляемого подводного снаряда "УПС-1", послужившего прообразом автономных спасательных снарядов нынешнего времени, представляло собой революционный этап в развитии всей Поисково-спасательной службы, резкий технический скачок, позволяющий проникать в глубинный мир морей и океанов. Возможности человека в царстве Нептуна кардинально возросли, большие глубины стали доступными не только с точки зрения лицезрения их через иллюминаторы, но и с чисто практической точки зрения плодотворной работы на благо флота и хозяйства страны. Когда на Балтике водолазы подняли утонувшую на испытаниях торпеду с глубины 168 метров, сначала подумали, что это окончательный рекорд - глубже человеку в ближайшее время не забраться. Первый же подводный аппарат, не напрягаясь, поднял на Черном море такую же торпеду с глубины 180 метров, доказав тем самым, что глубоководная пальма первенства отныне переходит к ним.

Рабочий автономный снаряд АС-10 и его экипаж

10 сентября 1974 года в составе аварийно-спасательной службы Черноморского флота (АСС ЧФ) была образована группа подводных лодок специального назначения, в которую входили по мере поступления от промышленности автономные обитаемые аппараты трех типов: спасательные подводные снаряды (СПС) предназначались для спасения экипажей затонувших подводных лодок (ЗПЛ) с глубин до 500 метров; автономные рабочие снаряды (АРС) - предназначались для поиска и обследования затонувших подводных лодок, а также оказания ЗПЛ экстренной помощи, как-то: подсоединение воздушных шлангов к "эпроновской" выгородке ЗПЛ от спасательного судна, наведение на ЗПЛ СПСов. Кроме того, АРСы были в состоянии выполнять на глубинах до 500 метров не сложные подводные работы и поднимать затонувшие в ходе учений и испытаний торпеды, мины и ракеты; поисковые и научно-исследовательские аппараты ("Поиск-2" и "Поиск-6") служили для изучения Мирового океана и были способны погружаться на 2000 и 6000 метров соответственно.


1989 г. Состав 288 группы спецназначения

В 1958 году Горьковское ОКБ "Лазурит" и Ленинградское СКБ "Малахит" начали проектировать автономные обитаемые подводные аппараты, в первую очередь это было вызвано требованием времени, так как: усиленными темпами развивался советский атомный подводный флот, до 300-400 метров возросли глубины погружения ракетных и торпедных подводных лодок, в случае их аварий традиционные методы спасения с помощью водолазной техники уже не годились.


1962 г. Первый спасательный аппарат УПС-1

В сентябре 1961 года Черноморскому флоту сдали первый подводный аппарат типа УПС (управляемый подводный снаряд). Он предназначался для носителя - ПЛ "С-63", переоборудованной на горьковском заводе "Красное Сормово" под спасательную подводную лодку проекта "666". Командовал первым подводным снарядом офицер Борис Артемьевич Глушков. Жизнь УПС оказалась недолгой. В 1968 году ПЛ "С-63" переоборудовали под подводную лабораторию - отныне в ней находился комплекс длительного пребывания человека под водой, а УПС с "С-63" сняли.

В 1970 году из Горького прибыл первый СПС проекта 1837- АС-1. Это подводный аппарат был способен погружаться глубже любой подводной лодки, его осваивал офицер Василий Иванович Мавpин. В 1971 году СПС вошел в состав Черноморского флота, а августе 1971 года в Севастополь пришел подводный аппарат проекта 1839 или АРС, который вошел в состав флота в 1972 году.

Сначала подводные аппараты непосредственно подчинялись командиру ПЛ "С-63" капитану 2 ранга Леониду Георгиевичу Лей (чуть позже он стал и первым командиром группы подводных лодок специального назначения - ГСПЛ) и организационно замыкались на соединение подводных лодок в г. Севастополе.

В 1972 году проводилась опытная эксплуатация подводных аппаратов, принятых в состав Черноморского флота, в период которой отрабатывались задачи одиночного и совместного плавания, вывод подводников из затонувшей ПЛ в простых и сложных условиях - при посадке на комингс-площадку под углом 30˚ и скорости подводного течения до двух узлов.


1961 г. УПС-1 на ПЛ С-63

На заключительном этапе опытной эксплуатации провели зачетное учение по фактическому оказанию помощи затонувшей ПЛ на глубине 60 метров. "Затонувшую" подлодку имитировала лежащая на грунте "С-63". АРС, управляемый офицером Юрием Савичем Карелиным, "нырял" и находил "С-63". Обследовав ее, ложился на грунт, включал маяк и наводил на искомый объект СПС. СПС присасывался к комингс-площадке "С-63" и забирал людей.

После вывода подводников APC заводил шланги со спасательного судна в "эпроновскую" выгородку. С подъемом аппаратов на борт судна-носителя "ОС-З" сверху продували цистерны главного балласта ПЛ и лодка всплывала на поверхность.

За создание такого спасательного комплекса с использованием подводных аппаратов конструкторы и строители получили Госпремию. Моряки, осваивавшие столь сложную технику, не получили ничего.

Жизнь внесла свои коррективы, и подводные аппараты, кроме своих основных спасательных функций, стали выполнять под водой самые разноплановые работы, о которых раньше отцы-проектировщики и не задумывались. Аппараты искали потерянные мины и торпеды, поднимали их на поверхность, обследовали затонувшие корабли, суда, якорные стоянки, искали под водой приборы, ценные конструкции, упавшие самолеты и вертолеты. Они изучали параметры моря, его флору и фауну, помогали подводным археологам, спасали, в буквальном смысле слова, уходящее в море Кавказское побережье, исследовали каньоны, оказывали помощь под водой терпящим бедствие гражданским подводным аппаратам, выполняли целый комплекс уникальных подводно-технических работ, недоступных обычным водолазам. Так что подводные аппараты из класса спасательных превратились в подводных трудяг и исследователей моря.


1974 г. "Поиск-2", "Коммуна" на испытаниях в б. Ласпи

В конце 1973 года Черноморский флот увидел новый по тем временам, сверхглубоководный аппарат, а по-научному - глубоководную подводную лабораторию проекта 1832 типа "Поиск-2", построенную на верфи Ленинградского адмиралтейского объединения. Лаборатория была предназначена для широкого спектра работ на глубинах до 2000 метров. "Поиск-2" мог производить геофизические работы (гравиметрическую и магнитную съемку, измерять магнитное поле Земли), гидрографические (промер, гидролокационную съемку дна с помощью ГЛС бокового и кругового обзора), гидрологические (замерять скорость течений, температуру, соленость, электропроводность, радиоактивность, прозрачность, освещенность, люминисцентность и скорость звука в воде. В дополнение "Поиск-2" имел возможность делать кинофотосъемку и стереофотосъемку участков дна, осуществлять сбор образцов грунта и конкреции своими манипуляторами.

Для проведения научных изысканий "Поиск-2" оснастили современными средствами навигации (абсолютный гидроакустический лаг, новый навигационный комплекс), подводным телевидением, системой автоматического управления, научно-исследовательской и радиоэлектронной аппаратурой.

Специально для "Поиска-2" было переоборудовано как судно-носитель судоподъемное судно "Коммуна". Испытания "Поиска-2" проводились в течение двух долгих лет. Сказалась большая насыщенность научно-исследовательской аппаратурой и бортовыми корабельными системами.

Заводские и государственные испытания "Поиска-2" успешно завершились 15 декабря 1975 года погружением на глубину 2026 метров.


1974 г. Экипаж и ученые на АС "Поиск-2"

Вот они, первые гидронавты, погрузившиеся в советском флоте на предельную глубину: командир "Поиска-2" капитан 3 ранга С. Антоненков, механик - старший лейтенант А. Мосунов, помощник командира по НИР мичман Ф. Бобров, главный конструктор Ю. Сапожков и председатель Госкомиссии капитан 1 ранга Н. Мышкин.

После сдачи глубоководной лаборатории "Поиск-2" флоту в течение трех лет проводилась опытная эксплуатация с участием Института географии Академии наук СССР (руководитель работ - доктор географических наук, профессор, лауреат Ленинской и Государственных премий Всеволод Зенкович), Института географии Академии наук Грузинской ССР (руководитель работ - доктор географических наук, профессор Арчил Кикнадзе - впоследствии генеральный директор "Грузморберегоза щиты"), Института геологических наук Академии УССР (руководитель работ - доктор геолого-минералогических наук, профессор Владимир Геворкьян.

Ценность полученных материалов - огромная.

Экспедиции по обследованию Бурун-Табийскоro, Чорохского, Потийского и Ингурского каньонов позволили окончательно выявить причины разрушения кавказских берегов и послужили отправной точкой для выработки Академией наук Грузии практических рекомендаций. Согласно последним, научно-производственное объединение "Грузморберегозащита" за 4 года добилось прекращения разрушения кавказских берегов и восстановило в этих районах поглощенные морем пляжи.

Изучение подводными аппаратами Ялтинских каньонов и Каламитского поля марганцевых конкреций дало богатую пищу соответствующим отраслям науки. Результаты этих исследований зафиксированы в бюллетенях Академии наук Украины. В ходе опытной эксплуатации "Поиска-2" был сделан ряд научных открытий, еще требующих будущего осмысливания (например - на глубинах свыше 1700 м обнаружены гидрологические линзы или абсолютная прозрачность воды, в районе Феодосийского залива на изучаемых глубинах зафиксирована радиация на порядок выше, чем считалось ранее, гравиметрическая съемка с ПА и с надводных судов, оказывается, имеют большие различия и тд. и т.п.).

Все подводные аппараты, строившиеся в Ленинграде и Горьком, обязательно прибывали в Севастополь, где испытывались, сдавались флоту, а затем уходили кто куда: кто на Северный флот, кто - на Тихоокеанский. Именно здесь учились подводные экипажи своему сложному глубинному ремеслу. И соединение подводных лодок специального назначения ЧФ в стране, что раньше называлась СССР, можно по праву назвать уникальной школой подводного плавания и подводно-технических работ.

С середины семидесятых годов подводные аппараты завоевали большой авторитет на Черноморском флоте. Даже плановые стрельбы корабли и подводные лодки старались не производить без соответствующей подстраховки со стороны полосатых "мини-подлодок". Только за первые 4 года существования ГПЛСН было найдено и поднято 28 торпед и мин.


1980 г. Поисково-обследовательский аппарат "Поиск-6"

За два десятилетия севастопольскими инструкторами-мастерами своего дела было освоено более тридцати подводных аппаратов самого разного назначения, выполнен огромный объем работ. После освоения "Поиска-2" наступил черед "Поиска-6" - первого советского батискафа. Именно "Поиск-6" достиг шестикилометровой глубины на Тихом океане, а ведь он был освоен в Севастополе и экипаж его подготовили в roроде русской славы.

Много славных дел у подводников "малого флота": спасение Пицунды, уходящей под воду, поиски сбитого "Боинга-747" на Тихом океане, работы на погибшем БПК "Отважный" и пароходе "Адмирал Нахимов", экспедиция на СС "Михаил Рудницкий" к затонувшему "Комсомольцу", спасение гражданского глубоководного аппарата "Аргус", походы в океаны на спасательных судах "Эльбрус", "Алагез", на научно-исследовательской лаборатории "Академик Алексей Крылов", поиск и подъем ядерной боеголовки у берегов Камчатки и т.д.


Первые командиры АС АРС - Юрий Карелин и СПС - Василий Маврин

Сотни спусков под воду совершили ветераны-подводники. Первым командиром первого АРСа был инженер-капитан 2 ранга Юрий Саввич Карелин, первым командиром СПСа - инженер капитан 2 ранга Василий Иванович Маврин. Сейчас они в отставке. Первыми всегда быть сложно, особенно командирами таких сложных технических устройств, какими являются подводные аппараты. Они чем-то сродни космическим кораблям и спутникам, только космос у них начинается с приставки "гидро", а работа не уступает космонавтам. В Севастополе на Черноморском флоте осваивали подводные аппараты увлеченные люди, энтузиасты и даже, можно сказать, в каком-то роде - морские романтики. Когда они уходили из действующего подводного флота в "новое дело", пересаживаясь с больших "подводных колесниц" на маленькие, с виду невзрачных "глубинных коньков", - они теряли многое: стабильность в службе, перспективу служебного роста, деньги, другие привилегии подводников. Правда, поговаривали, что работа пилотов глубоководных аппаратов будет как-то приравнена к работе людей в экстремальных условиях, что-то типа испытателей новой техники, - летчиков и космонавтов, ведь опасности на сверхглубинах подстерегали повсюду. Но дальше разговоров дело не пошло.

Многое "аппаратчики" вытянули на голом энтузиазме, на фанатичной вере и любви к собственной нелегкой, опасной, но интересной профессии.


Первый командир группы ПЛ спецназначения Л. Лей

Много сил и энергии отдал подводному флоту первый командир группы капитан 1 ранга Леонид Георгиевич Лей. Эстафету славных дел у ветеранов достойно приняли, сберегли и берегут по сей день последующие командиры ГПЛСН капитан 2 ранга Сергей Петрович Антоненков, инженер-капитан 2 ранга Юрий Савич Карелин, капитан 2 ранга Вадим Дмитриевич Крейза и капитан 2 ранга Валерий Николаевич Козорез. Командиры аппаратов - Анатолий Иванович Котигороховский, Геннадий Анатольевич Моисеенко, Сергей Викторович Цыганков, Иван Петрович Цуркан, Анатолий Вячеславович Павлов, Михаил Константинович Севрюгин, Сергей Михайлович Крыльцов, Илькам Индусович Файзуллин, Валерий Иванович Пстюх и многие другие.

Число погружений здесь всегда равнялось числу всплытий, а подводные работы проводились всегда грамотно и плодотворно - ведь техника "оживала" в мастерских руках мичманов Олега Рогозы, Алексея Лементаря, Валерия Новоселова, Виктора Бычука, Владимира Кулаковского, Александра Кривенкова, Павла Михайлюты, Николая Великорецкого, Сергея Трунина, Анатолия Фурдака.

Отдавая должное офицерам, мичманам и матросам, осваивавшим сложную подводную технику, нельзя не вспомнить тех, кто проектировал, строил и сдавал флоту, отрывая от личной жизни месяцы, годы, - отдавая все свое здоровье и кипучую энергию Великому Делу Подводного флота.

Главные конструкторы проектов: Сергей Васильевич Молотов (скб. "Лазурит"), Юрий Константинович Сапожков (скб. "Малахит").

Заместители главных конструкторов: Генрих Григорьевич Кацман, Евгений Николаевич Шанихин. Ответственные сдатчики: Александр Иванович Сорокин, Николай Михайлович Швайкин, Шая Шаевич Гертик, Дмитрий Терентьевич Логвинейко, Сергей Иванович Васильев, Леонид Павлович Лазуто.


1973 г. Работает АС-10 под Пицундой

Сдаточные механики: Александр Викторович Сафронов, Григорий Иванович Кутузов.

Председатели государственных приемных комиссий: капитан 1 ранга Николай Александрович Мышкин, капитан 1 ранга Валентин Иванович Мальцев, капитан 1 ранга Игорь Константинович Герасимов.

Всю навигационную и научно-исследовательскую аппаратуру на аппаратах всех проектов сдавали представители 9 НИИ ВМФ: капитан 1 ранга Алексей Иванович Шапошников, капитан 2 ранга Юрий Георгиевич Алфимов.

Отцом глубоководной техники называли подводники капитана 1 ранга Аврелия Ивановича Никитинского. Многие идеи, разработки, заложенные в подводную технику и тактику использования подводных аппаратов разрабатывались лично им. Многое осталось в мечтах. Он присутствовал на всех испытаниях и учениях, связанных с подводными аппаратами, на протяжении почти двух десятков лет.

Минуют смутные времена, Россия восстает из хаоса. Ее окрепшая экономика создаст подводные корабли нового поколения, и они вновь отправятся на привычную подводную работу в таинственные глубины морей и океанов, что остаются, как и прежде, никем дотоле не бороздимые. Времена эти идут...

СКАЧАТЬ СПРАВОЧНИК СПАСАТЕЛЯ КНИГА 8 (формат - pdf, страниц 200, размер 3,12 Мб)

Предисловие

1. Природа возникновения и классификация чрезвычайных ситуаций на морях и водных бассейнах
1.1. Классификация причин чрезвычайных ситуаций
1.2. Метеорологические явления
1.3. Гидросферные явления

2. Основные характеристики поражающих факторов

3. Организация, способы и средства разведки и поиска аварийных объектов
3.1. Организация поиска
3.2. Сигналы бедствия
3.3. Поиск аварийных объектов с использованием спутниковой системы связи
3.4. Средства обозначения аварийных надводных объектов
3.5. Поиск обозначенных объектов с помощью плавсредств
3.6. Поиск необозначенньк объектов
3.6.1. Визуальный поиск с помощью плавсредств
3.6.2. Поиск с помощью авиационных средств
3.7. Поиск пострадавших на поверхности воды

4. Технология, приемы и способы ведения спасательных работ
4.1. Эвакуация пострадавших с судов, терпящих бедствие
4.2. Использование вертолетов для спасения людей
4.3. Эвакуация пострадавших с поверхности воды
4.3.1. Спасение человека, упавшего за борт
4.3.2. Спасение людей с поверхности воды
4.4. Подводные работы в особых и экстремальных условиях
4.5. Подручные средства спасения, способы спасения людей с поверхности воды в прибрежных районах и способы спасения со льдин
4.6. Техника спасения вплавь

5. Ликвидация ЧС, связанных с авариями в подземных выработках, на подводных и надводных трубопроводах
5.1. Ликвидация затоплений водой подземных выработок
5.2. Ликвидация ЧС, связанных с авариями на надводных и подводных трубопроводах

6. Особенности ликвидации пожаров
6.1. Обеспечение пожарной безопасности
6.2. Стационарные системы пожаротушения
6.3. Борьба с пожарами

7. Управление поисково-спасательными работами
7.1. Общие положения
7.2. Руководитель поисково-спасательных работ
7.3. Оповещение
7.4. Порядок действий
7.5. Опрос потерпевших
7.6. Оснащение поисково-спасательных служб средствами управления

8. Организация взаимодействия спасателей МЧС России с представителями других министерств и ведомств, со спасательными службами иностранных государств
8.1. Участники совместных поисково-спасательных работ
8.2. Организация взаимодействия участников работ
8.3. Международное сотрудничество

9. Первая медицинская помощь пострадавшим
9.1. Приемы и способы оказания первой помощи пострадавшим
9.2. Способы искусственного дыхания
9.3. Особенности оказания помощи пострадавшим при переохлаждении
9.4. Медицинская помощь пострадавшим после длительного пребывания на спасательных средствах

10. Меры и техника безопасности при проведении поисково-спасательных работ
10.1. Общие требования
10.2. Подготовка к проведению поисково-спасательных работ
10.3. Проведение поисково-спасательных работ
10.4. Аварийные ситуации
10.5. Окончание поисково-спасательных работ

11. Технические средства для проведения поисково-спасательных работ
11.1. Характеристика и классификация морских средств спасения
11.2. Авиационные средства спасения
11.3. Коллективные средства спасения
11.3.1. Спасательные шлюпки
11.3.2. Спасательные плоты
11.4. Индивидуальные спасательные средства
11.5. Оснащение судов спасательными средствами

12. Экипировка спасателя

13. Особенности психологической подготовки спасателей для ведения спасательных работ на воде и под водой и поддержание психологической устойчивости среди пострадавших

Список литературы

Приложение 1. Шкала силы ветра
Приложение 2. Признаки погоды
Приложение 3. Перевод морских миль в километры
Приложение 4. Перевод километров в морские мили
Приложение 5. Соотношение различных мер длины
Приложение 6. Основные сокращения
Приложение 7. Флаги военно-морского свода сигналов РФ
Приложение 8. Флаги международного свода сигналов
Приложение 9. Сигналы бедствия (международные)
Приложение 10. Сигналы спасательные (международные)
Приложение 11. Азбука Морзе
Приложение 12. Русская семафорная азбука
Приложение 13. Условные знаки семафорной азбуки

В мае 1939 года экипаж субмарины «USS Squalus» потерпел бедствие в Атлантике. Подводники оказались на дне с иссякающим запасом воздуха и без средств спасения. Их судьба зависела от инженера кораблестроителя Чарльза Момсена. Катастрофа подводной лодки должна была в корне изменить ситуацию.

Спасение экипажа подводной лодки «USS Squalus» - одна из самых известных операций в морской истории. Она изменила принципы подводной техники, и расширила горизонты того, чего можно было достичь в опасном подводном мире.

Днем 23 мая 1939 года подводная лодка «USS Squalus» готовилась к рядовому погружению в 25 километрах восточного побережья Америки. Это было 19 погружение данной подлодки с задачей - текущая отработка внештатной ситуации. Командир субмарины был лейтенант Оливер Наквин. Подлодка должна была погрузиться на 15 метров за 60 секунд. Операция шло по плану, но неожиданно через несколько секунд наступила катастрофа. По неизвестным причинам тонны воды хлынули через главные клапаны в корме корабля. Корабельного сигнала тревоги не поступило. Экипаж потерял управление, и лодка пошла на дно.

За несколько минут вода заполнила все, люди отчаянно выбирались из ловушки, а те, кто успел добраться до поста управления, должны были принять мучительное решение героя - ждать пока к ним доберутся их товарищи или задраить водонепроницаемые переборки и оставить их, обрекая на смерть. Вскоре доступ на командный пункт был закрыт. В первые минуты погибло 26 человек, а 33 выживших подводника оказались погребенными в подводном склепе.

Вода затопила оба машинных отделения, а экипаж лодки в носовой части пережил затопление, но воздуха оставалось только на 48 часов, к тому же в аккумуляторные просачивалась вода, угрожая закоротить огромные аккумуляторные батареи, которые питали электромотор.

Через несколько минут, когда аккумуляторы слишком нагрелись, старший электрик отключил ток. В этот момент все поняли, если бы еще полминуты, то аккумуляторы взорвались и тогда никто бы не выжил.

Ни, электричества, ни отопления, никакой надежды на спасение подводной лодки. Тогда командир стал подводить итоги, делая перекличку. Кормовой и носовой торпедные отсеки не отвечали. Это был настоящий кошмар подводника.

В 30-х годах XX века подводники рисковали жизнью, ведь техника была еще в стадии становления. За всю историю субмарин еще ни один экипаж не был спасен с глубины. Даже сегодня, затопление считается опасностью, которая пугает любого подводника, а новобранцев учат реагировать на любую тревогу.

С момента затопление океанского судна « » немецкой подводной лодкой U-20 флот признал, как полезны субмарины. Но , построенные по обе стороны Атлантики, чаще были опасными для своих экипажей, чем для судов противника. Это были настоящие стальные ловушки. К 30-м годам конструкции лодок стали надежней, но служить под водой было очень тяжело и опасно. Подводники считались авантюристами своего дела, а адмиралы относились к ним как к предмету одноразового использования.

Депрессия 1929 года поставила Америку на грани катастрофы. Экономика была парализована, строительство прекратилось, заводы закрывались, железные дороги работали с перебоями. В стране было 25 миллионов безработных. Уровень жизни упал до предвоенного времени. Именно служба на подлодке давала возможность получить гарантированный доход, поэтому многие шли на эту военно-морскую службу, а остальные американцы боролись с нищетой. Морякам-подводникам гарантировалось обмундирование, трехразовое питание и ежедневное жалование.

подводная лодка «USS Squalus» (бортовой номер SS-192) на верфи Портсмут


Положение экипажа подводной лодки «Скволус» лежащей на глубине 74 метра ухудшалось. Морская вода вступила в контакт с аккумуляторным электролитом, в результате чего начал выделяться ядовитых хлор. Но выхода не было. Радиосвязь была невозможна, а на военно-морской базе не знали координат подлодки - она была в 8 километров от того места, где ее начали искать. Дело в том, что затерянная в океане команда выпустила радиобуй, но шансы на спасение были невелики, экипажу оставалось только молиться.

контр-адмирал Чарльз Момсен


Как это нестранно звучит, но ответ как спасти экипаж лодки зависел от лейтенанта Чарльза Момсена. В 1925 году о сам служил на подводном флоте, и на его глазах разыгралась похожая трагедия. На дне океана остались его несколько друзей, а флот ничего сделать не смог. Чарльз Момсен хотел все изменить, должны быть безопасными. За время службы он потерял много друзей, но один случай стоял у него перед глазами. Однажды вскрывая поднятую со дна субмарину, он обнаружил труп, у которого пальцы были стерты до костей. Подводник пытался открыть люк, что было невозможно. После этого, видя, через что проходят экипажи, Момсен сказал себе - так продолжаться больше не может.

Через год после этого инженер-подводник предложил американскому флоту фотографию своего изобретения, которое могло помочь попавшим в беду подводникам. Но спустя время он узнал, что его заявку даже не изучили.

Чарльз Момсен разработал конструкцию спасательной камеры, но его просто проигнорировали. Он не раз оббивал пороги конструкторских бюро, но его идеи возвращали. А в 1927 году погибла еще одна американская субмарина «USS S-4» (SS-109) со всем экипажем, и тогда замученный бюрократами инженер стал развивать свои идеи в частном порядке. За 15 лет до того как Жак Ив Кусто изобрёл акваланг, Момсен разработал и испытал свое устройство. Это приспособление давало подводникам шанс добраться на поверхность с метровой глубины.

«легкие Момсена»


Он создал так называемые «легкие Момсена», которые были похожи на противогаз. Вдыхаемый воздух проходил через известь, которая поглощала углекислый газ, и заменяла ее кислородом. Наполнив легкие кислородом, люди выходили через аварийный люк по одному и поднимались, делая паузы для декомпрессии. Это устройство позволяло находиться под водой недолго, но позволяло спасти жизнь морякам.

Вскоре на базе субмарин в Перл-Харборе прошли успешные испытания первого в мире спасательного устройства, после чего их приняли на вооружение, снабдив все американские субмарины.

«Скволус» также была укомплектована этими аппаратами. Все подводники умели ими пользоваться, но они были бесполезны на большой глубине. Помимо этого ледяная вода Атлантики уменьшала шансы на спасение. Тогда подводники открытые участки тела намазали жиром, чтобы не обморозить. Командир не знал, что последний раз с лодки были отправлены неправильные координаты, в результате они потерялись в океане. Из-за не выхода на связь в течение нескольких часов, командование ВМС США направило однотипные субмарины на поиски, но, к сожалению, в неправильный район. А на затонувшей субмарине голод и холод брали свое. Чтобы как-то поддержать боевой дух, командир раздал консервы. Торпедный отсек уже был покрыт тонким слоем льда. Кислород заканчивался с каждым вдохом.

Через 4 часа после пропажи подводной лодки «Скволус» никто не знал, где она находится. Наконец в 12:40 вахтенный увидел буй, и попытался выйти на связь, но безрезультатно. Обследовав район, подлодка была найдена, но оставалась серьезная проблема, как спасти подводников. Все печатные издания призывали помочь людям, но еще никогда не удавалось спасти затонувший экипаж.

первая в мире спасательная камера


Отправив аварийно-спасательное судно «USS Wandank» и тральщик «USS Falcon» в район бедствия, военно-морское руководство обратилась за помощью к Чарльзу Момсену, который работал над новым проектом, не привлекая излишнего внимания. После успеха с «легкими» он вновь предложил спасательную камеру, в виде колокола, которая была ранее отвергнута флотом и даже не подвергалась испытаниям. Принцип действия аппарата был таким. Камеру опускали и устанавливали на люк лодки. Загерметизировав стык, и откачав воду, водолазы могли поднять 7 человек. Американскому флоту пришлось довериться изобретателю и его колоколу.

Для полной герметичности спасательную камеру необходимо было установить точно над аварийным люком, а это означало, что монтаж должен произвести водолаз, привязав тросы к фланцу люка. На то время водолазное оборудование было примитивным, и составляло 10 килограммовые ботинки, скафандр, и патрубок длиной 75 метров для подачи воздуха и откачки углекислого газа.

операция по спасению подводников с подводной лодки «USS Squalus»


спасенный экипаж


Водолаза, который опустился под воду, звали Мартин Сибитски. Он должен был прикрепить трос к люку, по которому будут спускать колокол, права на ошибку у него не было. Данная задача была очень опасной, так как при таком глубоководном погружении, давление вытесняет азот из воздуха, растворенного в крови, и начинает действовать на мозг, введя человека в состояние опьянения. Но опытный водолаз Мартин Сибитски справился с первой фазой спасательной операции. В полдень камера опустилась на люк. Спустя 30 часов после катастрофы спасатели достигли подлодки. Первым отправили самых слабых 8 человек. Поднятие людей с глубины стало историческим моментом. Но предстояло поднять еще 25 человек. Еще два погружения прошли успешно, наверх было поднято еще 18 подводников. Последний раз водолазный колокол отправился на дно под вечер. Оставшийся экипаж уже предвидел конец испытаний. Однако поднявшись на 10 метров, колокол с последними подводниками застрял - заел трос, соединявший устройство с подлодкой. Водолаза Уолтера Сквайра сразу же отправили для освобождения троса. Но тот не поддавался и по приказу Момсена его перерезали. Только тогда спасательная камера весом 9,5 половиной тонн пошла на вспомогательном тросе. Казалось, все было позади, но водолаз, возвращавшийся назад, заметил, что трос державший колокол начал рваться. Аппарат болтался на одной жиле. В буквальном смысле жизнь людей висела на волоске. И тогда Момсен отдал приказ плавно опустить камеру на дно. Операция, которой не хватило несколько минут до триумфа, остановилась. Но у инженера был рискованный план. Если оператор в колоколе приоткроет клапаны и впустит больше сжатого воздуха, то камера станет намного легче, и ее можно будет поднять. И это получилось. 33 подводника были спасены.

Через полгода морское ведомство США разослало чертежи водолазного колокола в 13 стран, чтобы субмарины во всем мире стали более безопасными и были приняты на вооружение флотами других стран. Данная камера используется подводниками и сейчас, только называется спасательная камера МакКенна, который развил идею своего предшественника.

Спасение подводной лодки «Скволус» стало стимулом к развитию подводной техники. Появились новые изобретения вроде атмосферного водолазного костюма. Теперь водолазы могут работать на сотнях метров, занимаясь строительством и ремонтом нефтяных платформ Северного моря или подводных нефтепроводов, которые тянутся на сотни миль по океанскому дну. Это было бы невозможно без исследования Чарльза Момсена, которому вскоре присвоили звание командора, а его авторитет вырос до небес. Он стал отцом современного водолазного дела. Также одним из его достижений стала разработка дыхательной смеси для глубоководного погружения. Момсен заменил азот гелием, устранив, таким образом, азотную интоксикацию. В 60-е годы сын Момсена по имени Чарльз продолжил семейную традицию, и изобрел подводный аппарат «Элвин», которая вела поиски на морском дне водородной бомбы, потерянной бомбардировщиком B-2. Вскоре



Просмотров