Какой элемент необходим для возникновения горения. Процесс горения, виды горения

Для возникновения процесса горения необходимы: горючее вещество, кислород, источник воспламенения. Некоторые вещества способны гореть без кислорода, в атмосфере хлора, брома и т.п., но это явление, скорее всего, следует отнести к исключениям из правил.

Горючие вещества могут быть в виде газов, пыли, твердых веществ и жидкостей. Углерод, водород, сера и фосфор, входящие в состав горючих веществ, при горении окисляются и образуют продукты сгорания, которые обычно представляют серьезную опасность для жизни и здоровья людей. Например, 0,4 % окиси углерода, вдыхаемого человеком, является смертельной дозой; вдыхание в течение нескольких минут горячего воздуха температурой 70 °С тоже приводит к летальному исходу.

Выделяющееся при пожаре тепло может оказать разрушительное воздействие на строительные конструкции и технологическое оборудование, что часто приводит к авариям и взрывам.

Чтобы предотвратить пожар, необходимо исключить горючее вещество, кислород или источник воспламенения. Исключить кислород воздуха чрезвычайно сложно, поэтому при разработке противопожарных мероприятий обычно заменяют материалы на менее горючие и ограничивают возможность наличия источника воспламенения.

По горючести вещества и материалы подразделяют на группы:

    негорючие (несгораемые) - вещества и материалы, не способные к горению на воздухе;

    трудногорючие (трудносгораемые) - вещества и материалы, способные возгораться от источника зажигания, но не способные самостоятельно гореть после удаления источника зажигания;

    горючие (сгораемые) - вещества и материалы, способные самовозгораться, а также возгораться от источника зажигания и самостоятельно гореть после его удаления.

Из группы горючих веществ и материалов выделяют легковоспламеняющиеся вещества и материалы. Легковоспламеняющимися называют горючие вещества и материалы, способные воспламеняться от кратковременного (до 30 с) воздействия источника зажигания с низкой энергией (пламя спички, искра, тлеющая сигарета и т.п.). К легковоспламеняющимся относят жидкости с температурой вспышки не выше 61 °С в закрытом или 66 °С в открытом тигле.

Вспышкой называется быстрое сгорание горючей смеси, не переходящее в стационарное горение. Температура вспышки - минимальная температура, при которой данное количество паров над поверхностью жидкости может воспламениться. Горючая смесь - смесь паров горючего вещества с кислородом воздуха. Воспламенение такой смеси может произойти даже от маломощного и кратковременного источника воспламенения (искры).

Температура воспламенения - наименьшая температура, при которой вещество выделяет горючие пары и газы с такой скоростью, что после их зажигания возникает устойчивое горение пламени.

Температура самовоспламенения - температура, при которой начинается самонагревание смеси до воспламенения, заканчивающегося горением.

Нижний и верхний пределы воспламенения (взрываемость) - объемная доля горючего в смеси (%), ниже и выше которой смесь становится неспособной к воспламенению.

Предел распространения огня характеризуется способностью строительных конструкций к самостоятельному горению, измеряется в сантиметрах и представляет собой размер повреждения конструкции в контрольной зоне в течение 15 мин.

В строительном производстве при проектировании мероприятий по предотвращению пожаров ориентируются на недопустимость появления источника воспламенения, поскольку очень многие строительные материалы относятся к группе сгораемых и исключить их из технологических процессов невозможно.

1Процесс горения требует наличия трех компонентов: вещества, способная гореть; источника огня с необходимым запасом энергии горения, определенного количества окислителяокислителя является кислород, в котором наиболее бурно происходят процессы горения окислителя могут быть кислородом вещества, такие как марганцовокислый калий КМn2О4 селитра КNО3, азотная кислота НМ03 и др.
2
Несмотря на большой опыт использования на практике, процессы горения остаются одними из наиболее сложных для научного изучения. Наука о горении является в высшей степени междисциплинарной, лежащей на стыке таких научных дисциплин, как газодинамика, химическая термодинамика, химическая кинетика, молекулярная и химическая физика, тепломассообмен, квантовая химия и физика, материаловедение и компьютерное моделирование
3
Прекращение горенияПрекращение горения любого вещества достигается путём физического или химического воздействия на реакцию горения, в результате чего происходит уменьшение количества выделяющегося тепла, снижение температуры горения и в конечном счете прекращение реакции.Прекращение горения достигается по нескольким механизмам. Исходя из этого различают следующие механизмы прекращения горения: разбавление концентраций реагирующих веществ; изоляция реагирующих веществ; охлаждение реагирующих веществ; химическое торможение реакции горения.
На практике, часто совмещают одновременно несколько методов прекращения горения. Прекращение горения путём разбавления концентрации реагирующих веществ основано на разбавлении воздуха или горючего вещества, поступающего в зону горения, негорючими веществами до тех пор, пока образующаяся в зоне реакции смесь станет негорючей. Условия прекращения горения в таком случае требуют, чтобы используемые для этой цели вещества были негорючими, низкотеплопроводными, обладать большой теплоемкостью и не поддерживать горения. К таким веществам относятся: азот, продукты сгорания, двуокись углерода, водяной пар.
Их можно вводить непосредственно в факел пламени, а также в объем помещения, где происходит горение. Прекращение горенияпутём изоляции реагирующих веществ. В этом случае горючее вещество или зону горения отделяют от воздуха. Огнетушащие средства: твердые листовые материалы (войлок, асбест, металлические крышки и др.), негорючие сыпучие материалы (песок, тальк и др.), жидкие вещества (химическую и воздушно-механическую пену, воду в чистом виде и с добавками, повышающими ее вязкость и смачивающую способность), газообразные вещества (продукты сгорания, азот, двуокись углерода).
Тушение методом охлаждения реагирующих веществ - до такого состояния, когда выделяющиеся пары не в состоянии будут воспламениться. Условия прекращения горения, которое осуществляется огнетушащими средствами, состоят в их высокой теплоёмкости, величиной удельной теплоты плавления и парообразования, способности равномерно распределяться на поверхности горящего вещества.

Горение. Необходимые и достаточные условия, необходимые для обеспечения горения.

Горением называется сложный физико-химический процесс взаимодействия горючего вещества и окислителя, характеризующийся самоускоряющимся химическим превращением и сопровождающийся выделением большого количества тепла и света. Обычно в качестве окислителя участвует кислород, которого в воздухе 21%. Для обеспечения горения необходимо и достаточно: горючее вещество; окислитель; источник воспламенения определенной мощности, обеспечивающий реакцию между горючим веществом и окислителем. Для обеспечения горения горючее вещество и окислитель должны находится в определенных соотношениях друг с другом. Горение, характеризуемое наличием раздела фаз (например, горение твердого вещества), называется гетерогенным. Горение газообразных смесей называется гомогенным.

Горение может осуществляться в двух режимах: самовоспламенения и распространения фронта пламени. Важнейшая особенность процесса горения – самоускоряющийся характер химического превращения.

58.Пожар. Классификация пожаров в зависимости от веществ, подвергаемых горению. Пожаром называется – неконтролируемый процесс горения, сопровождающийся уничтожением материальных ценностей и создающий опасность для жизни людей. Согласно ГОСТу 12.1.004 пожар осуществляется как неконтролируемое горение вне специального очага, причиняющее материальный ущерб. Классификация пожаров в зависимости от веществ, подверженных горению и рекомендуемые средства пожаротушения при этом приведены в таблице 2.4.

А-горение твердых веществ :А1- Горение твердых, веществ, сопровождаемое тлением (например, древесина, бумага, уголь, текстиль); А2-Горение твердых веществ, не сопровождаемое тлением (каучук, пластмассы); В-горение жидких веществ: В1-Горение жидких веществ, нерастворимых в воде (бензин, нефтепродукты), а также сжижаемых твердых веществ (парафин); В2-Горение жидких веществ, растворимых в воде (спирты, ацетон, глицерин и др.); С-горение газообразных веществ: Бытовой газ, пропан, водород, аммиак и др.; Д-горение металлов и металлосодержащих веществ: Д1-Горение легких металлов и их сплавов (алюминий, магний и др.) кроме щелочных; Д2-Горение щелочных металлов (натрий, калий и др.); Д3-Горение металлосодержащих соединений (металлоорганические соединения, гидраты металлов); Класс пожара Е – объект тушения (электроустановки), находящиеся под напряжением. Тушение производится газовыми составами и порошками.

Виды горения — это классификация физико-химического процесса в зависимости от характеристик его протекания.Деление на виды может производиться на основе анализа экзогенных и эндогенных характеристик.

Горение — это стремительно протекающая химическая реакция окисления, сопровождающаяся выделением тепла и свечением. Особенностью этого процесса является наличие цепной реакции распространения огня с ускорением и увеличением количества выделяемого тепла по мере вовлечения в процесс нового материала.

Для обеспечения горения необходимо наличие следующих факторов:

  • окислителя (чаще всего это кислород);
  • горючего вещества;
  • возгорания.

Эти факторы можно разделить на две части: условия и стартовый механизм. К первым относятся:

  • состояние среды;
  • состояние материала.

Главным фактором среды является наличие такого количества окислителя, который мог бы достаточно долго поддерживать ускоряющуюся цепную реакцию окисления.

Материал должен быть горючим, то есть способным к окислению. К состоянию материала как фактору горения относится и его структура. Пористый материал горит лучше, потому что в нем созданы все условия для лучшего доступа окислителя на всех стадиях процесса.

Стартовый механизм — это возгорание, после которого начинается цепная реакция распространения пламени. Может быть экзогенным и эндогенным. Обычно стремительное окисление начинается от поджога, осуществляемого человеком или природными стихиями.

Человек преднамеренно или нечаянно резко поднимает температуру материала в какой-либо его части, формируя управляемое или неуправляемое (пожар) распространение пламени. Природные стихии — это любой источник высокой температуры. Обычно это вулканы, метеориты, разряды молнии.

Эндогенные причины возгорания — это переход окисления из медленной стадии в быструю. Обычно сам по себе огонь появляется при помещении большого количества горючего материала в среду со значительным содержанием окислителя. Ярким примером является самовозгорание угля или торфа, извлеченных из бескислородной среды на воздух.

Существует еще теория самовозгорания органики при активном действии разлагающих микроорганизмов. Ее суть состоит в том, что бактерии или грибы, разлагая много органики, могут повысить температуру, после чего появляется пламя.

Однако у этой теории есть один изъян: при повышении температуры до определенного предела микроорганизмы перегреваются и прекращают свою деятельность, после чего температура органики снижается. Кроме того, бактерии и грибы могут активно жить только во влажной среде, в которой возникновение пламени невозможно.

Максимальное повышение температуры в разлагающейся куче травы достигает +60°С. После этого бактерии или погибают, или впадают в анабиоз. Через какое-то время на смену перегревшимся микроорганизмам придут другие, но уже в остывшем субстрате.

Виды горения по скорости

Горение — это по определению высокая скорость распространения реакции окисления. Однако есть показатели и побольше. С этой точки зрения виды горения делятся на следующие:

  • дефлаграционное — скорость около 10 м/с;
  • взрывное — около100 м/с;
  • детонационное — около 5000 м/с.

Дефлаграционное горение — это процесс, сопровождаемый передвижением пламени по всему материалу.

Взрыв — это процесс одновременного стремительного окисления всего горючего материала сразу. Обычно он происходит при возгорании очень мелкого и сильно горючего материала.

Детонация — это процесс, при котором распространяется ударная волна, инициирующая реакцию окисления. Последняя поддерживает движение первой за счет стремительно выделяющегося тепла. Ударная волна и экзотермические реакции развивают сверхзвуковую скорость, формируя детонацию.

Эту классификацию не стоит путать с видами пожаров. Понятие последнего произошло не совсем от физики и химии. Это оценка степени управляемости процесса. Горение дров в печке поддается контролю, поэтому это не пожар. В отличие от горения травы и деревьев в лесу.

Разновидности по признакам горючего материала

Конечной стадией горения является сгорание. Оно делится на полное и неполное. Первое — это образование продуктов, которые не являются больше горючим материалом. Обычно это вода, газообразные окислы и минерализованные твердые частицы (зола, пепел). Неполное сгорание происходит в условиях, препятствующих распространению огня. При этом образуются обугленные частички горючего материала.

Внешние условия и виды горения находятся в причинно-следственной взаимосвязи. Примером этого утверждения является деление видов по состоянию смесей.

  1. Бедные горючие смеси. Это связь какого-либо материала с окислителем, в которой воспламеняющихся компонентов слишком мало для продолжительного процесса окисления. Иными словами, это такая смесь, в которой окислителя много, а гореть нечему. Возможно и обратное: материал горючий и его много, а окислителя слишком мало.
  2. Богатые смеси. В них соотношение окислителя и горючего материала способствует возникновению устойчивого окисления с высокой температурой. В этой смеси есть чему гореть долго и с большим жаром. Главное, чтобы на этот процесс хватило окислителя.

В норме в воздухе содержится около 21% кислорода. Процесс горения стремительно меняет пропорции состава воздуха. Горение часто становится невозможным при снижении содержания кислорода до 14-18%. В этих неблагоприятных условиях гореть продолжают только некоторые вещества, например водород, этилен, ацетилен. При уменьшении количества кислорода менее 10% горение невозможно для всех смесей.

Процесс хоть и быстрый, но многофакторный. Это позволяет создавать большое количество таксонов и классификаций. Так что разнообразие видов горения зависит не только от среды и материала, но и от фантазии человека.

Для осуществления горения необходимо выполнение определенных условий, без которых горение невозможно. Первое условие состоит в том, что все процессы горения протекают исключительно в парогазовой фазе. Вторым условием осуществления горения является наличие трех компонент:

  • горючего газа или пара в определенной концентрации с определенной областью воспламенения;
  • окислителя, способного в определенных условиях вступать в химическую реакцию с реагирующим горючим газом;
  • источника воспламенения с достаточной энергией для поджигания и осуществления химической реакции воспламенения горючей смеси.

Характерной особенностью процессов горения является их большая скорость; она обусловлена протеканием реакций в пламени при высокой температуре и сильной зависимостью от температуры скоростей большинства химических процессов. В ряде случаев, когда реагирующая среда неоднородна, результирующая скорость превращения зависит в первую очередь от скорости доставки компонентов в зону реакции, а скорость собственно химического процесса становится несущественной. В такой ситуации решающее значение имеет физическое состояние реагирующих компонентов. В неоднородной среде, например на границе раздела фаз, горение протекает обычно гораздо медленнее, чем в однородной смеси.

Наиболее важным видом горения является горение газов. Большинство твердых и жидких продуктов, участвующих в горении, перед вступлением в основную реакцию либо испаряется, либо разлагается с частичным превращением в газо- образные продукты (газифицируется), которые затем реагируют в газовой фазе. Это происходит в результате прогрева соответствующего компонента (обычно горючего), обусловленного теплопередачей из зоны пламени. Лишь нелетучие горючие, например кокс, твердые продукты пиролиза каменного угля, некоторые металлы, сгорают собственно гетерогенно, на границе раздела фаз. Поэтому закономерности горения газов представляют наибольший интерес.

В повседневной практике принято связывать процесс горения с окислением кислородом различных горючих – угля, газообразных углеводородов, нефтепродуктов и др.

В горючих системах различают горючее и окислитель. В современной технике часто встречаются системы, в которых окислителем служат оксиды азота, галоиды, озон. В ряде случаев в горении участвует только один исходный продукт – эндотермическое соединение, способное к быстрому распаду, полимеризации или самоокислению (взрывчатые вещества и пороха) со значительным тепловыделением. Все же горючие системы, в которых окислителем служит кислород воздуха, наиболее распространены.

Для того чтобы могли протекать реакции горения, необходимо создать условия для воспламенения смеси топлива и окислителя.

Воспламенение может быть самопроизвольным и вынужденным. Под самовоспламенением понимается такое прогрессирующее самоускорение химической реакции, в результате которого медленно протекающий в начальной стадии процесс достигает больших скоростей и на завершающей стадии протекает мгновенно.

Вынужденное воспламенение (зажигание ) обусловлено внесением в реагирующую смесь источника теплоты, температура которого выше ее температуры воспламенения. Газо-воздушная смесь, не воспламеняющаяся при низкой температуре, может воспламениться при повышенной температуре, когда создаются благоприятные условия для возникновения активных центров в результате потери устойчивости сложных исходных молекул веществ.

Процесс воспламенения характеризуется тем, что имеются определенные границы (пределы), вне которых воспламенение не наступает ни при каких условиях. Известно, что газо-воздушные смеси воспламеняются только в том случае, когда содержание газа в воздухе находится в определенных (для каждого газа) пределах. При незначительном содержании газа количество теплоты, выделившейся при горении, недостаточно для доведения соседних слоев смеси до температуры воспламенения, т.е. для распространения пламени. То же наблюдается и при слишком большом содержании газа в газо-воздушной смеси. Недостаток кислорода воздуха, идущего на горение, приводит к понижению температурного уровня, в результате чего соседние слои смеси не нагреваются до температуры воспламенения. Этим двум случаям соответствуют нижний и верхний пределы воспламеняемости. Для метана нижний предел воспламеняемости в воздухе составляет 5,3%, верхний – 14,0%. Смесь метана с кислородом имеет нижний предел 5,1%, а верхний – 61%. Поэтому кроме перемешивания газа с воздухом в определенных пропорциях должны быть созданы начальные условия для воспламенения смеси.

Температура воспламенения газа зависит от ряда факторов, в том числе от содержания горючего газа в газо-воздушной смеси, давления, способа нагрева смеси и т.д., и поэтому не является однозначным параметром. Температура воспламенения метана в воздухе составляет от 545 до 850°С.

В практике используются оба способа воспламенения горючих смесей: самовоспламенение и зажигание. При самовоспламенении весь объем горючей газо-воздушной смеси постепенно путем подвода теплоты или повышения давления доводится до температуры воспламенения, после чего смесь воспламеняется уже без внешнего теплового воздействия. В технике широко применяется второй способ, именуемый зажиганием. При этом способе не требуется нагревать всю газо-воздушную смесь до температуры воспламенения, достаточно зажечь холодную смесь в одной точке объема каким-нибудь высокотемпературным источником (искра, накаленное тело, дежурное пламя и т.д.). В результате воспламенение передается па весь объем смеси самопроизвольно путем распространения пламени, происходящего не мгновенно, а с определенной пространственной скоростью. Эта скорость называется скоростью распространения пламени в газо-воздушной смеси и является важнейшей характеристикой, определяющей условия протекания и стабилизации горения.

Пределы воспламенения газо-воздушных смесей расширяются с повышением температуры, влияние же давления носит более сложный характер. Повышение давления выше атмосферного для некоторых смесей (например, водорода с воздухом) сужает пределы воспламенения, а для других (смесь метана с воздухом) – расширяет. При давлении ниже атмосферного верхний и нижний пределы сближаются, т.е. концентрационные пределы воспламенения сужаются.

Условиями осуществления вынужденного воспламенения являются наличие эффективного источника зажигания и способность образовавшегося фронта пламени самопроизвольно перемещаться (распространяться) в объеме газовоздушной смеси. Этот процесс носит название распространения пламени.

Различают два режима стационарного распространения пламени: в покоящейся или ламинарно движущейся среде и в турбулентном потоке. Первый носит название нормального распространения пламени, а второй – турбулентного.

Рассмотрим явления, происходящие в холодной горючей среде при ее локальном поджигании, которое заключается в быстром разогреве малого объема горючей среды до весьма высокой температуры. Полагаем, что она достаточна для того, чтобы в разогретой области практически мгновенно закончились возможные химические реакции и установилось состояние равновесия, поскольку скорость реакции сильно зависит от температуры. К такому локальному нагреванию обычно приводит газовый разряд либо пережигание тонкой короткой металлической нити током короткого замыкания.

Если реакция в разогретом газе экзотермическая, как это всегда имеет место при горении, то происходит разогрев соседнего слоя газа, обусловленный теплопроводностью. В этом слое в свою очередь произойдут химическое превращение и сопровождающее его выделение тепла Так возникает процесс послойной передачи импульса, инициирующего реакцию и выделение тепла по всему объему, заполненному горючей средой. Зона интенсивной реакции, или зона горения, перемещается в пространстве – происходит распространение пламени.

Реакция в пламени – самоускоряющаяся, обычно до практически полного ее завершения: тепловыделение и химический процесс взаимно ускоряют друг друга. Скорость перемещения пламени определяет интенсивность процесса горения и является его важнейшей характеристикой. Распространение пламени по однородной горючей среде, при котором зона самоускоряющейся реакции движется вследствие послойного разогрева по механизму теплопроводности от продуктов превращения, называют нормальным горением или дефлаграцией. Изложенные качественные представления о механизме горения были развиты одним из основоположников теории горения В. А. Михельсоном.

Зону изменения температуры и состава от начальных, соответствующих холодной горючей среде, до конечных, которые имеют продукты реакции, называют фронтом пламени. Опыт показывает, что эти величины изменяются во фронте пламени очень резко; ширина фронта пламени, границы которого, естественно, строго не фиксированы, при нормальном атмосферном давлении обычно не превышает десятых долей миллиметра. Поэтому во многих случаях можно рассматривать фронт пламени как поверхность, разделяющую холодную горючую среду и нагретые продукты сгорания. Такой прием облегчает установление ряда общих закономерностей, не связанных со спецификой реакций в пламени. При этом скорость реакции и скорость тепловыделения мы будем рассматривать не как объемные, а как поверхностные характеристики и будем относить их к единице поверхности фронта пламени.



Просмотров