Применение беспилотных летательных аппаратов в гражданских целях. Распределенная инерциальная система

Применение БЛА в гражданском секторе в настоящее время находится в ожидании решения некоторых технических и организационных проблем, без чего невозможно стабильное использование БЛА.

Основные проблемы связаны с использованием воздушного пространства, выделением частотного диапазона для управления БЛА и передачи информации с борта на землю и наоборот и, наконец, с развитием рынка гражданских услуг, который находится в стадии становления.

Из поставленных гражданским сектором рынка задач применения БЛА, в первую очередь, хочется отметить такие, которые в ближайшее время могут стать востребованными. Это, в первую очередь, контрольные функции БЛА. С помощью беспилотных систем можно контролировать как техническое состояние объектов, так и их безопасность и функционирование, притом, что контролируемые объекты могут находиться на большом удалении (протяженные объекты).

Отсюда можно сделать вывод, что интерес, который в последнее время проявляют организации ТЭК к использованию БЛА, закономерен. Имея в своей структуре сотни тысяч километров трубопроводов, которые довольно слабо охраняются, а зачастую и вообще не охраняются, предприятия ТЭК напрямую заинтересованы в использовании беспилотных систем. Простая экономическая выгода подталкивает предприятия ТЭК к принятию решений по использованию БЛА, и этот процесс, находящийся в данный момент в начальной стадии, будет неуклонно развиваться.

К сожалению, в руководстве этих компаний до сих пор нет единого представления о том, как с помощью БЛА получить наибольший эффект (экономический, в том числе) от применения беспилотных систем. В недрах некоторых серьезных организаций начались формироваться представления об использовании БЛА и, в связи с этим, концепции по применению БЛА в интересах компаний.

Здесь существует другая опасность - опасность зарегулировать этот вопрос таким образом, что его трудно будет решить вообще.

Хотелось бы, чтобы потенциальные пользователи беспилотных системам выступили инициаторами введения некоторых Правил применения БЛА в интересах гражданского сектора в небе России.

Основной вопрос в этой сфере - это получение статуса воздушного судна (ВС) беспилотными аппаратами.

БЛА, не являясь ВС, не подлежат регистрации в реестре ВС и не имеют Свидетельства о регистрации и годности к использованию. Им невозможно, да и не нужно получать разрешение на использование воздушного пространства. А это уже чревато самыми серьезными последствиями. Аппарат, способный летать на высоте до 4 км со скоростью до 250 км/час, массой около 100 кг, может подняться в воздух без разрешения на использование воздушного пространства, ведь по классификации - это радиоуправляемая модель. В этой ситуации скорее нужны не запретительные меры, а организация разрешительных мероприятий. «Джин» из бутылки вылетел, нужно срочно научить его летать, притом правильно.

В рамках действующего законодательства есть вид авиации, в котором «беспилотники» могут существовать на законном основании. Это – экспериментальная авиация. По этому пути идут и другие страны (США, Европа). В этой отрасли есть многолетний опыт использования летательных аппаратов, нормативные документы, разработанные десятилетиями, также есть возможность контроля за техническим состоянием БЛА и многое другое. Получив статус ВС в рамках экспериментальной авиации, БЛА смогут использовать воздушное пространство по существующим правилам.

Конечно, все БЛА должны быть застрахованы от ущерба третьим лицам. БЛА должны иметь на борту транспондеры, отвечающие всем требованиям ИКАО в этой области. Те БЛА, которые не способны нести аппаратуру СНВ-2, могут летать только в специально отведенных районах по предварительным заявкам с большим сроком уведомления.

Цель всех организаций, участвующих в регламентации использования БЛА в воздушном пространстве России, состоит в том, чтобы достигнуть уровня безопасности полетов любого класса БЛА, эквивалентного к уровню безопасности полетов самолетов. Для этой цели необходимо разработать технические требования к БЛА, которые бы способствовали выполнению этой задачи.

БЛА в последние годы активно применялись военными, поэтому наработанный ими опыт эксплуатации БЛА в различных условиях отбрасывать ни в коем случае нельзя. Наоборот, нужно привлечь военных к выработке технических требований к БЛА с учетом того, что цели и задачи применения БЛА в гражданском секторе некоторым образом отличаются от задач решаемых военными.

Думается, что было бы целесообразно создать некую новую организацию, способную решить вопросы, связанные с эксплуатацией БЛА в гражданских целях и способную сформулировать некую долгосрочную регулирующую политику в области применения БЛА.

Итак, подводя итоги, можно отметить тот факт, что использование БЛА в воздушном пространстве России не только возможно, но и необходимо. Полеты БЛА возможны при условии выполнения требований (выработанных) для получения Свидетельств о летной годности и регистрации. Это можно сделать в рамках экспериментальной авиации.

Вопросы применения БЛА для обеспечения безопасности объектов на сегодняшний день выходят на первые роли.

Угроза жизнедеятельности различных организаций заставляет все больше обращать внимание на новые методы контроля и мониторинга земной поверхности.

Больше всего это беспокоит такие организации, которые имеют протяженные объекты, контроль за которыми довольно сложно организовать. В первых рядах - это владельцы различных трубопроводов, Пограничные войска ФСБ России, ОАО РАО «ЕЭС России», ОАО «Российские железные дороги». Все эти организации могут ощутить экономический эффект от применения беспилотных систем через очень короткий период времени.

Ввиду высокой протяженности и территориальной обширности объектов наблюдения воздушный мониторинг является наиболее эффективным средством наблюдения и дистанционного сбора данных об их состоянии.

В настоящее время воздушное патрулирование осуществляется авиационными средствами в соответствии с Положением о воздушном патрулировании трасс магистральных трубопроводов.

Согласно данному положению, периодичность выполнения облетов планируется с учетом технических характеристик объектов, условий их эксплуатации, не реже 2-х раз в месяц.

Взрывной рост рынка БЛА и связанных с ним услуг прогнозируется при преодолении в скором времени ряда технических и административных барьеров, ограничивающих использование БЛА в национальном воздушном пространстве.

Использование беспилотных авиационных комплексов (БАК) в гражданской области на сегодняшний момент практически ограничивается частными случаями локальных применений в интересах решения текущих производственных или хозяйственных задач, преимущественно в экспериментальном порядке.

Ситуация с БАК в Российской Федерации наглядно иллюстрируется прошедшими в 2007 и 2008 годах форумами-выставками «Беспилотные комплексы в интересах ТЭК» и на авиасалонах МАКС 2005 и МАКС 2007.

Ряд разработок соответствует современному уровню развития авиастроения, средств связи, управления и систем дистанционного зондирования. Наибольший интерес представляют компании, предлагающие комплексное системное интегрирование несущей платформы, средств сбора и обработки данных мониторинга. Некоторые из разработок находятся в стадии предсерийных прототипов и предлагаются в качестве законченных систем, включающих носители различного типоразмера, комплексы целевой нагрузки, средства наземной поддержки и обработки информации.

В процессе выполнения полета, как правило, управление БЛА осуществляется автоматически посредством бортового комплекса навигации и управления, в состав которого входят:

  • приемник спутниковой навигации, обеспечивающий прием навигационной информации от систем ГЛОНАСС и GPS;
  • система инерциальных датчиков, обеспечивающая определение ориентации и параметров движения БЛА;
  • система воздушных сигналов, обеспечивающая измерение высоты и воздушной скорости;
  • различные виды антенн, предназначенные для выполнения задач.

Бортовая система навигации и управления обеспечивает:

  • полет по заданному маршруту (задание маршрута производится с указанием координат и высоты поворотных пунктов маршрута);
  • изменение маршрутного задания или возврат в точку старта по команде с наземного пункта управления;
  • облет указанной точки;
  • автосопровождение выбранной цели;
  • стабилизацию углов ориентации БЛА;
  • поддержание заданных высот и скорости полета (путевой либо воздушной);
  • сбор и передачу телеметрической информации и параметрах полета и работе целевого оборудования;
  • программное управление устройствами целевого оборудования.

Бортовая система связи:

  • функционирует в разрешенном диапазоне радиочастот;
  • обеспечивает передачу данных с борта на землю и с земли на борт.

Данные, передаваемые с борта на землю:

  • параметры телеметрии;
  • потоковое видео- и фотоизображение.

Данные, передаваемые на борт, содержат:

  • команды управления БЛА;
  • команды управления целевой аппаратурой.

Информация, полученная с БЛА, должна классифицироваться в зависимости от степени представляемой угрозы. Классификация проводится оператором наземной станцией управления (НСУ), либо непосредственно бортовым компьютером БЛА. Во втором случае программное обеспечение комплекса содержит элементы искусственного интеллекта, и требуется выработать количественные критерии и градации уровней угрозы. Такие критерии могут быть сформулированы путем экспертных оценок и формализованы таким образом, чтобы минимизировать вероятность ложного сигнала тревоги.

Полеты беспилотных летательных аппаратов ничем не отличаются от полетов пилотируемой авиации. БЛА оснащены системами наведения, бортовыми радиолокационными комплексами, датчиками и видеокамерами. В производственной программе ЗАО «Транзас» есть БЛА, который по всем показателям превышает аппараты производства Великобритании и Франции, а по цене значительно дешевле, чем БЛА США. Это БЛА «Дозор-3». Летные испытания данного образца начнутся в 2008 году и к 2009 году БЛА «Дозор-3» будет готов к использованию.

Главный конструктор БЛА Г.В. Трубников. ЗАО «Транзас» Статья с uav.ru .

НАУКА И ВОЕННАЯ БЕЗОПАСНОСТЬ № 2/2008, стр. 38-40

Ю.Н. ЧАХОВСКИЙ ,

генеральный директор Минского авиаремонтного завода

Б.С. КОВЯЗИН ,

старший научный сотрудник

Научно-исследовательского института Вооруженных Сил Республики Беларусь

Бурное развитие в ведущих странах мира информационных технологий неизбежно привело к переосмыслению концепций применения беспилотных летательных аппаратов (БПЛА), путей дальнейшего их развития, совершенствованию полезной нагрузки и приданию им многоцелевого характера. БПЛА занимают достойное место в производственных программах ведущих авиастроителей мира. Исходя из задач обеспечения национальной безопасности, Республике Беларусь следует ускорить выход на международный уровень разработки и производства многофункциональных БПЛА.

Эффективность способов ведения боевых действий определяется показателями качества средств поражения, разведки, связи и автоматизированных систем управления (АСУ). Отсутствие современных комплексов разведки и управления не реализует в полном объеме потенциальные возможности средств поражения. Возможности существующих в настоящее время наземных средств радиолокационной и оптико-электронной разведки ограничены дальностью прямой видимости и не обеспечивают обнаружения целей и объектов противника, находящихся за естественными укрытиями. Использование БПЛА в военных целях стало одним из важных направлений развития современной авиации и позволяет автоматизировать управление войсками, сократить потерю личного состава в бою за счет оперативной разведывательной информации о текущей обстановке. В этой связи актуальна задача создания мобильных, простых в эксплуатации и дешевых средств ведения воздушной разведки.

Основные достоинства использования БПЛА в военных целях:

отсутствие потерь летного состава;

отсутствие необходимости выделения сил и средств на поиск и спасение;

невысокая стоимость БПЛА;

малые затраты на обслуживание БПЛА и подготовку расчета;

возможность выполнения маневров с высокими перегрузками;

малые размеры и эффективная отражающая поверхность;

способность применять вооружение с малых расстояний;

возможность дистанционного пилотирования посменно несколькими операторами.

Использование БПЛА в военных целях.

БПЛА применяются в военной сфере уже более 30 лет. Так, например Израиль использовал БПЛА в 1973 г. для ведения разведки и в качестве ложных воздушных целей.

В настоящее время в США разработаны, испытаны и приняты на вооружение разведывательные БПЛА различного назначения, в том числе: «Hunter», «Predator», «Global Hawk».

В Великобритании разрабатывается беспилотный разведчик «Феникс», предназначенный для обнаружения и автоматического сопровождения целей.

В войне в Ираке беспилотные аппараты стали использоваться в массовых количествах. Они применялись не только в разведывательных целях, но периодически наносили удары ракетами «Hellfire» по позициям иракских войск. БПЛА «Predator», летая со скоростью 120 км/ч на высоте от 3 до 4,5 км над полем боя в течение 24 ч, передавал на землю четкую «картинку» любого участка территории, над которой находился. Изображение в режиме реального времени передавалось на мониторы компьютеров, которыми были оснащены полевые командные пункты.

На сегодняшний день в России созданы три тактических комплекса БПЛА:

комплекс «Строй-П» с БПЛА «Пчела-1» (разработан в 1990 году, размещен на десантном бронетранспортере, старт носителя происходит за счет двух пороховых ускорителей, вес БПЛА - 140 кг);

гражданский аэродинамический наблюдатель телевизионный «ГрАНТ» (разработан в 2001 году; размещен на двух автомобилях УАЗ, старт носителя происходит за счет энергии опускающегося груза, вес БПЛА -20 кг);

Рис.1. Классификация БПЛА

ближний разведчик аэродинамический телевизионный «БРАТ» (разработан в 2003 году; для дальностей до 10 км - переносной; для дальностей 50 - 90 км - пункт управления аналогичен пункту управления комплекса «ГрАНТ», вес - 2,8 кг).

обеспечение радиолокационного обнаружения замаскированных объектов и автоматическое их распознавание;

обеспечение целенаправленного доступа потребителей к результатам воздушной разведки;

увеличение времени патрулирования и дальности полета БПЛА;

разработка микролетательных аппаратов;

разработка боевых (ударных) БПЛА.

Разработка комплексов БПЛА на Государственном предприятии «Минский авиаремонтный завод».

Эффективность мониторинга воздушной и наземной обстановки во многом определяется летно-техническими характеристиками БПЛА, уровнем оснащения радиоэлектронным оборудованием, надежностью систем запуска, связи и управления, автономностью и быстротой обслуживания БПЛА.

С учетом этих требований на Государственном предприятии «Минский авиаремонтный завод» разрабатывается мобильный авиационный разведывательный комплекс «ФИЛИН», в состав которого входит универсальный оперативно-тактический БПЛА «Турман». Универсальность данного изделия обусловлена модульной конструкцией аппарата, что позволяет использовать различную по массогабаритным характеристикам и назначению бортовую аппаратуру, обеспечивает скрытность развертывания, простоту эксплуатации аппарата.

Комплекс «ФИЛИН» предназначен для выполнения задач по оперативно-тактической разведке техническими средствами, обладает большой автономностью и мобильностью. Количество БПЛА, находящихся в составе комплекса, позволяет вести постоянную разведку или целеуказание в районе цели.

патрулирование местности в любое время суток и при любых метеорологических условиях;

обнаружение и идентификация объектов;

уничтожение обнаруженных объектов, представляющих угрозу;

подавление средств ПВО.

Мониторинг воздушной и наземной обстановки БПЛА связан с просмотром некоторого участка местности и получением снимков на фотопленке, магнитной ленте или диске. В процессе полета в заданном районе БПЛА по радиоканалу в реальном масштабе времени (или близком к реальному) может передавать разведывательную информацию на модуль системы связи, управления и обработки информации. Оператор БПЛА оценивает поступающую информацию и по командному радиоканалу управляет самим БПЛА и его целевой нагрузкой, например телевизионной камерой, с целью наилучшего наблюдения неподвижных или движущихся объектов, определения их типа и координат.

Тактика действия комплекса «ФИЛИН»:

взлет с места дислокации и полет в район патрулирования;

поиск объектов и наблюдение за местностью;

обнаружение объектов и определение их координат;

идентификация объектов наблюдения;

передача информации оператору БПЛА;

возврат к месту дислокации или продолжение поиска новых объектов.

Оператор БПЛА работает по следующему алгоритму:

поиск объекта;

обнаружение объекта;

распознавание объекта;

измерение координат объекта;

оперативное доведение информации до потребителя.

Оператор управляет движением БПЛА по маршруту, на котором ожидается присутствие интересующих оператора объектов, и наблюдает изображение подстилающей поверхности. Заметив подозрительную точку, оператор выполняет управляющие действия (наведение БПЛА на объект, сужение поле зрения телевизионной камеры, переключение на телевизионную камеру с более узким полем зрения и др.), чтобы лучше рассмотреть ее. Когда изображение подозрительного объекта становится достаточно крупным, то оператор принимает решение об его обнаружении, то есть убеждается, что подозрительная точка не является просто неоднородностью местности, а входит во множество интересующих его объектов.

Далее оператор БПЛА продолжает рассматривать обнаруженный объект, определяет его тип («командный пункт», «радиолокационная станция», «танк» и т.п.) и измеряет координаты выбранного объекта, например, путем совмещения перекрестия на экране с изображением объекта и подачи в ЭВМ команды на вычисление координат. По результатам работы с объектом оператор БПЛА формирует доклад об объекте, содержащий его тип и координаты, и оперативно доводит информацию до потребителя. Завершив работу с первым объектом, оператор управляет полетом БПЛА по намеченной программе в целях дальнейшего наблюдения поля боя.

Основные задачи, решаемые оператором БПЛА:

выработка решения на выполнение действий по поиску объектов на основании результатов анализа событий и уровня располагаемых возможностей БПЛА;

обеспечение устойчивого управления движением БПЛА по маршруту, на котором ожидается присутствие интересующих оператора объектов;

прием, переработка и анализ достоверности получаемой по радиоканалу от БПЛА информации;

обнаружение, распознавание и определение координат выбранного объекта;

использование технических возможностей бортовых устройств и систем БПЛА;

контроль использования ресурсов бортовой системы энергоснабжения БПЛА;

использование принципа выбора объекта по степени его важности и приоритетности;

оперативное доведение полученной информации до потребителя.

После выполнения полетного задания БПЛА выходит на точку запуска, где оператор комплекса «ФИЛИН» переводит БПЛА в режим визуальной посадки с помощью аппаратуры дистанционного управления. Посадка может осуществляться, в зависимости от условий посадки, при помощи парашюта или по-самолетному, на посадочную фюзеляжную лыжу. Особенность конструкции системы посадки обеспечивает сохранность деталей БПЛА от повреждений во время приземления.

После проверки бортового оборудования, укладки парашюта и заправки топливом БПЛА вновь готов к запуску. За время подготовки к запуску БПЛА № 1, можно запустить БПЛА № 2, что дает возможность увеличить время пребывания в районе цели (т.е. обеспечить непрерывное слежение за целью).

Поскольку планер БПЛА выполнен из отдельных модулей, это дает возможность замены деталей, поврежденных при посадке или в результате огневого воздействия при выполнении задания. Кроме того, имея базовый модуль (фюзеляж и центроплан), можно менять геометрические размеры и аэродинамическую схему БПЛА (нормальная, «бесхвостка», типа «утка») при производстве с наименьшими потерями по времени и затратам.

Для подготовки расчетов комплекса «ФИЛИН» необходимо проведение курсов по обучению расчетов. Эти задачи на высоком методическом уровне готовы выполнить высококвалифицированные специалисты Минского авиаремонтного завода. В настоящее время на заводе идет проработка вопросов разработки тренажной системы для подготовки расчетов комплекса «ФИЛИН», позволяющей оценить уровень подготовки операторов управления БПЛА в различных условиях боевой работы.

В целях дальнейшего развития беспилотных летательных аппаратов и создаваемых на их базе комплексов, разрабатываемый на Государственном предприятии «Минский авиаремонтный завод» комплекс «ФИЛИН» с БПЛА «Турман» может стать основой беспилотной авиации Вооруженных Сил Республики Беларусь. Предприятие обладает возможностями для выпуска целой серии различных по своим характеристикам БПЛА и комплексов, создаваемых на основе базовой модели модульной конструкции, предназначенных для выполнения различных полетных заданий. Это позволит создать технологическую гибкость при производстве новых модификаций БПЛА и уменьшит конечную стоимость изделий.

Важное место при разработке БПЛА занимает сотрудничество с научно-исследовательскими институтами и предприятиями оборонной промышленности Республики Беларусь. Только кооперация производственного и научно-технического потенциала в целях создания беспилотной авиации Вооруженных Сил Республики Беларусь может дать положительный результат. Предприятие «Минский авиаремонтный завод» разрабатывает и создает БПЛА, систему запуска и транспортировки, а предприятия оборонной промышленности - бортовое оборудование - малогабаритные системы дальнего дистанционного визуального управления и наблюдения, систему навигации, а также боевые части и специальную аппаратуру. Нельзя исключать и сотрудничество с российскими предприятиями, имеющими богатый опыт в подобных разработках.

Необходимость оснащения Вооруженных Сил Республики Беларусь дешевой системой тактической беспилотной разведки давно назрела. В интересах ВС РБ БПЛА «Турман» комплекса «ФИЛИН» могут быть использованы в качестве управляемых мишеней для тренировки экипажей летчиков истребительной авиации и расчетов ЗРК, ведения разведки, постановки помех, контроля результатов нанесения огневых ударов авиацией, ракетными войсками и артиллерией, контроля обстановки на поле боя в тактической, оперативно-тактической и оперативной зонах обороны. В интересах пограничного ведомства - решать задачи по охране Государственной границы; в интересах МВД - обеспечивать выполнение задач по охране общественного порядка, соблюдению правил дорожного движения и решения других задач, в т.ч. по предотвращению террористических акций; в интересах МЧС - проводить сбор данных обстановки, масштабов и причиненного ущерба при возникновении чрезвычайных ситуаций, выявлять очаги пожаров, разрушения, затопления и заражения.

На Государственном предприятии «Минский авиаремонтный завод» также разработан БПЛА аэродромного старта «Стерх» (рис.2).

Перспективными направлениями по разработке БПЛА являются:

Автоматическое распознавание может быть решено традиционными статистическими процедурами распознавания, а также способными к обучению «интеллектуальными» алгоритмами, например, на базе нейросетевых технологий. Актуальными в настоящее время являются также задачи создания помехозащищенной и не допускающей сбоя радиосвязи с высокой степенью сжатия передаваемой информации.

Боевые задачи, решаемые комплексом «ФИЛИН»:

БПЛА «Стерх» выполнен по нормальной аэродинамической схеме с прямым крылом и наплывом в корневой части. Крыло имеет элероны, флапероны и простые закрылки. Хвостовое оперение выполнено по двухкилевой, двухбалочной схеме с Т-образным стабилизатором. Шасси выполнено по трехточечной схеме с носовым неуправляемым колесом, взлет и посадка по-самолетному.

В хвостовой части фюзеляжа установлен бензиновый поршневой двигатель мощностью 19 л.с. объемом 200 смЗ германского производства фирмы 3W с толкающим трехлопастным винтом производства Государственного предприятия «Минский авиаремонтный завод».

Летно-технические характеристики БПЛА «Стерх»:

размах крыла -3,8 м;

длина фюзеляжа - 3 м;

взлетный вес - 53 кг;

вес целевой нагрузки - до 30 кг;

максимальная скорость - до 200 км/ч;

крейсерская скорость - 130 км/ч;

продолжительность полета - до 3 ч;

дальность полета - 300 км.

Сравнительная характеристика летно-технических параметров БПЛА «Стерх», RQ-7 «Shadow» (США), «Пчела» (Россия) представлена в таблице 1.

Таким образом, повышение эффективности средств разведки может быть достигнуто использованием БПЛА, которые способны решать достаточное количество боевых задач. Основные усилия по разработке БПЛА следует сосредоточить на создании массово выпускаемых, дешевых и многофункциональных аппаратов с современным навигационным оборудованием и системами управления, что вполне под силу Государственному предприятию «Минский авиаремонтный завод».

Для комментирования необходимо зарегистрироваться на сайте

Изобретение относится к области авиационной техники. Беспилотный авиационный комплекс (БАК) безаэродромного базирования содержит беспилотный летательный аппарат (БПЛА) и стартовую наземную станцию, содержащую мобильную платформу и установленные на ней энергетическую установку и блок управления полетом БПЛА. БПЛА выполнен в виде двухконсольного крыла, на поворотных консолях которого установлены движители. Консоли выполнены с возможностью их поворота на 180° относительно продольной оси крыла вокруг корпуса для полезной нагрузки. На платформе стартовой наземной станции установлен вертикально трансмиссионный вал, связанный с редуктором, и стартовое устройство, установленное с помощью трех опор. Стартовое устройство содержит средства для передачи вращения от трансмиссионного вала к БПЛА, а также средства для его фиксации и расфиксации при заданной скорости вращения трансмиссионного вала. Опоры стартового устройства выполнены телескопическими с независимой регулировкой их длины от блока управления для предполетной коррекции пространственной ориентации беспилотного летательного аппарата. БАК снабжен системой предполетной автоматической статической балансировки беспилотного летательного аппарата. Достигается увеличение дальности и длительности действия, а также эффективности беспилотного летательного аппарата. 3 з.п. ф-лы, 4 ил.

Рисунки к патенту РФ 2403182

Изобретение относится к беспилотным летательным аппаратам (БПЛА), используемым в составе подвижного беспилотного авиационного комплекса (БАК) безаэродромного базирования.

Известны беспилотные летательные аппараты, например, Eagle Eye американской фирмы Bell (www janes com) типа V-22 Osprey с поворотными винтами, позволяющими летательному аппарату взлетать по-вертолетному, а затем переходить на самолетный режим полета.

Недостатком такого типа летательных аппаратов является ограничение дальности, высоты и времени его работы вследствие использования для подъема и полета летательного аппарата ограниченных внутренних источников энергии, например топлива на борту.

Известен беспилотный авиационный комплекс фирмы «Израел Аэроспэйс Индастриз ЛТД» (WO 2007/141795 A1, B64C 27/20, 13.12.2007 - наиболее близкий аналог), включающий наземную станцию, подъемную платформу, несущую полезную нагрузку и движитель из четырех вентиляторов с электроприводом, обеспечивающих вертикальную подъемную силу и позволяющих поддерживать заданную высоту платформы на режиме висения без аэродинамических несущих поверхностей, таких как крылья. Комплекс включает также привязь, оперативно связывающую наземную станцию с платформой, которая обеспечивает электрическую связь между платформой и наземной станцией.

Использование движителями внешнего источника энергии, установленного на мобильной платформе, а также невозможность совершать самостоятельное перемещение вне привязки к наземной станции - ограничивают функциональные возможности такого беспилотного авиационного комплекса. В частности, высота подъема платформы ограничена длиной привязи, которая продиктована, в том числе, массой входящего в нее кабеля.

Задачей заявляемого изобретения является повышение эффективности действия беспилотного летательного аппарата, расширение контролируемой площади, дальности его действия и длительности его функционирования за счет использования внешнего источника энергии (установленного на мобильной платформе) для накопления кинетической энергии и обеспечения «прыжкового взлета» беспилотного летательного аппарата на заданную высоту и его перехода на самолетный режим работы.

Поставленная задача решена благодаря тому, что в беспилотном авиационном комплексе, содержащем беспилотный летательный аппарат, включающий движители и корпус для полезной нагрузки, и стартовую наземную станцию, содержащую мобильную платформу, например колесную, и установленные на ней энергетическую установку и блок управления полетом беспилотного летательного аппарата, согласно изобретению беспилотный летательный аппарат выполнен в виде двухконсольного крыла, на консолях которого установлены движители, причем консоли выполнены с возможностью их поворота на 180° относительно продольной оси крыла вокруг корпуса для полезной нагрузки, например шарообразного, а на платформе стартовой наземной станции установлен вертикально трансмиссионный вал, связанный с редуктором, и стартовое устройство, которое установлено с помощью трех опор и содержит средства для передачи вращения от трансмиссионного вала к беспилотному летательному аппарату, а также средства для его фиксации и расфиксации относительно стартового устройства.

В частности, стартовое устройство может быть снабжено двумя жестко связанными с трансмиссионным валом кронштейнами с захватами, взаимодействующими с ответными силовыми узлами беспилотного летательного аппарата и выполненными с возможностью их фиксации и расфиксации при заданной скорости вращения трансмиссионного вала.

Опоры стартового устройства выполнены телескопическими с независимой регулировкой их длины от блока управления для предполетной коррекции пространственной ориентации беспилотного летательного аппарата.

Беспилотный авиационный комплекс снабжен также системой предполетной автоматической статической балансировки беспилотного летательного аппарата.

Использование стартового устройства для подъема беспилотного летательного аппарата путем «прыжкового взлета» (термин, используемый, например, применительно к автожиру) за счет внешнего источника питания обеспечивает ему запас кинетической энергии, которая используется для его подъема на заданную высоту и для перехода на самолетный режим работы. Выполнение беспилотного летательного аппарата в виде крыла, консоли которого вместе с движителями на них имеют возможность поворота на 180 градусов относительно продольной оси крыла, обеспечивает беспилотному летательному аппарату различные режимы работы - от взлетного режима, обеспечивающего его раскрутку с помощью стартовой наземной станции, до самолетного режима, обеспечивающего автономный длительный полет. Движители могут быть выполнены с турбореактивными, с турбовинтовыми, а также с поршневыми или электрическими двигателями.

Вертикальный трансмиссионный вал, передающий вращение с кронштейнов стартового устройства беспилотному летательному аппарату при зафиксированных захватах, позволяет раскрутить его до заданной скорости вращения трансмиссионного вала, обеспечивая ему запас кинетической энергии. При расфиксации захватов кронштейнов, например, при заданной скорости вращения трансмиссионного вала, беспилотный летательный аппарат совершает «прыжковый взлет» до необходимой расчетной высоты. При раскрутке беспилотного летательного аппарата на трансмиссионном валу стартовой наземной станции, консоли его крыла с движителями находятся в положении, обеспечивающими его вращение. Возможность автоматической предполетной коррекции стартовой пространственной ориентации беспилотного летательного аппарата, а также возможность предполетной автоматической статической балансировки его (дистанционно со стартовой наземной станции или по заданной программе) направлены на обеспечение точности и безопасности его взлета.

Блок управления полетом, размещенный на стартовой наземной станции, обеспечивает дистанционное управление работой беспилотного летательного аппарата, в частности подает сигналы для изменения взаимного положения консолей с движителями как для работы па самолетном режиме, так и в противоположном положении - для работы в стартовом режиме. Беспилотный авиационный комплекс снабжен системой предполетной автоматической статической балансировки беспилотного летательного аппарата, выполненной, например, с помощью известной системы перемещаемых грузов.

Изобретение поясняется чертежами, на которых изображены:

Фиг.1 - беспилотный авиационный комплекс с беспилотным летательным аппаратом (с турбовинтовыми двигателями) при стартовом положении консолей крыла;

Фиг.2 - беспилотный авиационный комплекс с беспилотным летательным аппаратом (с турбореактивными двигателями) при стартовом положении консолей крыла;

Фиг.3 - беспилотный летательный аппарат при положении консолей крыла, соответствующем самолетному режиму полета;

Фиг.4 - схематичное изображение различных этапов вывода беспилотного летательного аппарата на самолетный режим полета,

Беспилотный авиационный комплекс состоит из собственно беспилотного летательного аппарата 1 и стартовой наземной станции 2 (фиг.1), которая служит для обеспечения «прыжкового взлета» беспилотного летательного аппарата и дистанционного управления его полетом.

Беспилотный летательный аппарат 1 выполнен в виде двухконсольного крыла, на консолях 3 и 4 которого соответственно установлены движители 5 и 6. Движители 5 и 6 могут быть выполнены, например, в виде турбовальных двигателей с винтами 7 и 8 с изменяемым углом установки лопастей. Кроме этого, они могут иметь стабилизирующие поверхности 9 и рули и 10 для управления полетом беспилотного летательного аппарата 1 (фиг.1 и 2).

Беспилотный летательный аппарат 1 имеет корпус 11 полезной нагрузки, выполненный, например, шарообразной формы для уменьшения лобового сопротивления при запуске. Корпус 11 полезной нагрузки предназначен для размещения в нем автономных бортовых источников питания, топлива для двигателей, а также различного оборудования для приема, управления и передачи на землю различной информации.

Консоли 3 и 4 выполнены профилированными по всей длине для создания подъемной силы при горизонтальном полете БПЛА, а также имеют возможность поворота на 180 градусов относительно продольной оси крыла.

Стартовая наземная станция 2 выполнена в виде платформы 12, установленной на транспортном средстве, например, на автомобильном, железнодорожном или водном. На платформе 12 установлены блок 13 управления полетом беспилотного летательного аппарата, энергетический узел 14, а также редуктор 15 с вертикальным трансмиссионным валом 16 и стартовое устройство 17, которое установлено с помощью трех телескопических опор 18.

Стартовое устройство 17 снабжено несколькими жестко связанными с трансмиссионным валом 16 кронштейнами 19 с захватами на концах (не показаны), взаимодействующими с ответными силовыми узлами беспилотного летательного аппарата 1 для передачи ему вращения от трансмиссионного вала 16. Захваты выполнены быстродействующими, с возможностью их фиксации и мгновенной расфиксации относительно стартового устройства 17 при заданной скорости вращения трансмиссионного вала 15 и связаны с блоком управления 13.

Телескопические опоры 18 выполнены с независимой регулировкой их длины от блока управления 13 для предполетной коррекции пространственной ориентации беспилотного летательного аппарата 1.

Беспилотный авиационный комплекс снабжен системой предполетной автоматической статической балансировки беспилотного летательного аппарата 1, которая может быть выполнена, например, за счет внутренней системы изменения его центровки, например, путем перекачки топлива или изменением положения полезной нагрузки в корпусе 11.

Беспилотный авиационный комплекс осуществляет запуск беспилотного летательного аппарата (БПЛА) 1 следующим образом. Стартовая наземная станция 2 прибывает на место старта и разворачивает свою платформу 12. БПЛА устанавливают на стартовое устройство 17, связанное с трансмиссионным валом 16, и соединяют силовые узлы крепления БПЛА с захватами на кронштейнов 19 стартового устройства 17. Затем приводят БПЛА 1 в стартовое положение (позиция А на фиг.4), при котором консоли 3 и 4 крыла с движителями 5, 6 повернуты относительно друг друга на 180 градусов относительно продольной оси крыла. После этого с помощью блока управления автоматически проводят коррекцию стартового пространственного положения БПЛА путем независимой регулировки длины телескопических опор 18 для осуществления точного и безопасного старта. Кроме этого, проводят предполетную автоматическую статическую балансировку БПЛА.

Затем осуществляют раскрутку БПЛА с помощью трансмиссионного вала 16 редуктора 15 наземного энергетического узла 14 стартовой наземной станции 2. При достижении заданных расчетных оборотов трансмиссионного вала 16 блок 13 управления полетом БПЛА подает команду на расфиксацию узлов захвата кронштейнов 19. Кинетическая энергия, накопленная БПЛА, преобразуется в подъемную силу и позволяет ему осуществить «прыжковый взлет» на расчетную высоту (положения А-Г фиг.4). Блок 13 управления полетом в момент отрыва (положения А и Б фиг.4) изменяет шаг консолей 3, 4 крыла, придавая крылу свойства несущего винта.

В процессе исчерпания кинетической энергии БПЛА блок управления 13 осуществляет переходный режим с «взаимным» разворотом консолей 3, 4 крыла до их положения, соответствующего полету БПЛА «по самолетному» (положения В-Г фиг.4).

При начале падения БПЛА (из положения Г фиг.4) включаются движители 5, 6, и БПЛА переходит в самолетный режим полета (положение Д фиг.4) за счет бортовых источников энергии. Автономный полет БПЛА выполняет по программе блока управления полетом 13 на самолетном режиме.

Выполнение запуска с использованием эффекта «прыжкового взлета» позволяет существенно экономить бортовые источники энергии, что увеличивает длительность работы БПЛА, дальность и эффективность его действия.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Беспилотный авиационный комплекс, содержащий беспилотный летательный аппарат, включающий движители и корпус для полезной нагрузки, и стартовую наземную станцию, содержащую: мобильную платформу, например колесную, и установленные на ней энергетическую установку и блок управления полетом беспилотного летательного аппарата, отличающийся тем, что беспилотный летательный аппарат выполнен в виде двухконсольного крыла, на консолях которого установлены движители, причем консоли выполнены с возможностью их поворота на 180° относительно продольной оси крыла вокруг корпуса для полезной нагрузки, например шарообразного, а на платформе стартовой наземной станции установлен вертикально трансмиссионный вал, связанный с редуктором, и стартовое устройство, которое установлено с помощью трех опор и содержит средства для передачи вращения от трансмиссионного вала к беспилотному летательному аппарату, а также средства для его фиксации и расфиксации относительно стартового устройства.

2. Беспилотный авиационный комплекс по п.1, отличающийся тем, что стартовое устройство снабжено жестко связанными с трансмиссионным валом кронштейнами с захватами, взаимодействующими с ответными силовыми узлами беспилотного летательного аппарата и выполненными с возможностью их фиксации и расфиксации при заданной скорости вращения трансмиссионного вала.

3. Беспилотный авиационный комплекс по п.1, отличающийся тем, что опоры стартового устройства выполнены телескопическими с независимой регулировкой их длины от блока управления для предполетной коррекции пространственной ориентации беспилотного летательного аппарата.

4. Беспилотный авиационный комплекс по п.1, отличающийся тем, что он снабжен системой предполетной автоматической статической балансировки беспилотного летательного аппарата.

Следует различать демонстрационные полеты, любительские вылеты или спортивные соревнования от авиационных работ. Для выполнения первых (как, впрочем, и вторых) достаточно зарегистрировать свой БПЛА в Федеральном агентстве воздушного транспорта. В случае визуальных наблюдений (видеосъемка) владельцу БПЛА следует обращаться за разрешениями в органы местной администрации (в случае полетов в населенных пунктах) и в зональные центры управления воздушным движением (в иных случаях). С аэрофотосъемкой же все намного сложнее.

Следующие законы определяют существующее в этом отношении законодательство: Воздушный кодекс РФ, Федеральные правила использования воздушного пространства РФ, инструкция по разработке, установлению, введению и снятию временного и местного режимов, а также кратковременных ограничений, которая была утверждена приказом Министерства Транспорта РФ №171 от 27.06.11, и Табель сообщений о движении Воздушных судов в РФ.

Рис. 1. Структура единой системы организации воздушного движения РФ

Структура единой системы управления воздушным движением разбивает территорию РФ на зоны ответственности органов воздушного движения, которые осуществляют разрешения и контроль на использование воздушного пространства всеми участниками воздушного движения (Рис.1).

В случае полетов БПЛА для обеспечения безопасности требуется разрешение на использование воздушного пространства.

Разрешение получается путем введения местного или временного режимов ограничения ИВП (рис.2).


Рис. 2. Режимы ограничения полетов

В чем основная разница этих режимов? Временный режим используется в воздушном пространстве вне зон международных воздушных линий, постоянных воздушных линий, аэродромов, аэропортов. Представления на местный или временный режим поддаются в зональный центр или главный центр ЕСОрВД - не менее чем за 5 (в главный) или за 3 суток (в зональный).

Структура подачи заявок на получение разрешения на использование воздушного пространства такова (Рис. 3):


Рис. 3. Структура подачи заявок

После подачи представления в главный центр либо в зональный центр вы получаете номер режима. Затем за день до АФС составляется суточный план работы, где указывается тип воздушного судна, его характеристики, имя ответственного на площадке запуска за съемки и его контактные данные, время выполнения полетов, высота полета и другие параметры. За два часа до выполнения полетов руководитель, пилот-оператор звонит диспетчеру, докладывая о начале работ. По их завершении он снова звонит оператору, докладывая об окончании работ.

Для выполнения аэрофотосъемочных работ необходимо получение, как минимум, трех основных документов:

    Разрешение на съемку Генерального штаба вооруженных сил РФ;

    Разрешение на съемку оперативного управления штаба военного округа, в зоне ответственности которого находится снимаемый объект;

    Разрешение территориальных органов безопасности ФСБ;

    Дополнительно:

    Разрешение местной городской администрации в случае полетов над территориями населенных пунктов;

А также необходимо обладать лицензией на право работы с использованием сведений, составляющих государственную тайну.

При аэрофотосъемке существуют и такие тонкости, как закрытые территории, запретные зоны, приграничные полосы – на АФС в этих местах требуются дополнительные разрешения.

Следующим шагом после окончания АФС является передача полученных материалов на контрольный просмотр военного цензора в оперативном управлении штаба военного округа. Без заключения военного цензора использование материалов в открытом доступе запрещено.

Это весь перечень правовых аспектов аэрофотосъемки. Возможно, это не все ответы на интересующие вас вопросы, в таком случае, вот они:

Вопрос: Сколько в среднем времени уходит на согласование во всех инстанциях?

Ответ: Как правило, разрешения ГШ получаются за 10-15 дней. Еще месяц занимает получение дополнительных стандартных разрешений. То есть, в среднем, время согласования – 1,5-2 месяца; просмотр же материалов может занимать от недели до пары месяцев.

В: Необходимо ли каждый раз получать все разрешения в случае, например, NDVI -съемки на своих полях агрономом в течение 1 сезона?

О: Получаемые разрешения действуют в течение двух лет, однако, вряд ли вы просто так получите лицензию на право работы со сведениями, составляющими государственную тайну. Аэровизуальное наблюдение подходит для агрономов в случае необходимости периодически осматривать поля, однако, видеосъемка не позволит вычислить NDVI . Выход – использование услуг по АФС организаций, имеющих такую лицензию.

В: Получение материалов АФС военными делает их по умолчанию секретными со всеми вытекающими требованиями, как быть в таком случае?

О: Для этого флешка или магнитный носитель фотокамеры должны быть до того учтены в режимно-секретном органе. Пилот-оператор либо ответственный представитель должен иметь соответствующий допуск. Соответствующий носитель он получает перед полетами в этом органе, в соответствии с инструкцией выполняет все действия при АФС или присутствует при их выполнении, и по завершении сдает носитель обратно, спецпочтой направляя на контрольный просмотр в штаб ВО, и только после этого получает заключение или акт контрольного просмотра, в соответствии с которым выполняется дальнейшая работа с этими материалами. Магнитный носитель все равно остается зарегистрированным в этом органе и считается как секретный.

В: Каким образом выполняется регулярная съемка, например, раз в неделю?

О: Разрешение ГШ выдается один раз и действует 2 года, а военный цензор при контрольном просмотре может задать вопрос: «На каком основании, получив одно разрешение, вы несколько раз подаете материалы на просмотр?». На это потребуется обосновать цензору необходимость проведения многократных работ.

В: Кто и каким образом осуществляет контроль исполнения согласований?

О: Органы управления воздушным движением и Министерство обороны. В случае нарушения законов, предприятия могут приостанавливать и лишать лицензии и штрафовать с конфискацией БПЛА.

В: Можно ли получить разрешение на разовую работу, например, через вашу компанию?

О: ГК «Геоскан» может получить такие разрешения и выполнить работы по АФС, однако разрешение и право проведения работ оформляется именно на ГК «Геоскан». Возможна такая ситуация, при которой компании предоставляется со стороны оператор и БПЛА, а представитель оказывает авиационные услуги, однако это тема отдельного разговора.

Надеемся, что мы исчерпывающе ответили на ваши вопросы, и теперь вы будете более полностью подкованы в правовых аспектах использования БПЛА.

Просмотров